ASYMPTOTIC ANALYSIS OF THE FINITE MOMENTS TRANSPORT METHOD IN OPTICALLY THICK MEDIA

被引:1
|
作者
BADRUZZAMAN, A [1 ]
机构
[1] SANDIA NATL LABS,ALBUQUERQUE,NM 87185
关键词
D O I
10.13182/NSE92-A23981
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
A theoretical analysis is presented that assesses the accuracy of the finite moments transport method in optically thick, scattering-dominated media. Two algorithms of the method, originally developed for neutronics problems, are considered. One algorithm uses a truncated balance relation, and the other uses a nodal integral relation to close the system of generalized balance equations that arise in the method. The analysis utilizes an asymptotic expansion of the flux with respect to a small parameter, epsilon, which is the ratio of the mean free path of the radiation to a typical dimension of the domain. The behavior of the algorithms is analyzed both in the interior, where the correct solution is that of a diffusion equation, and near the boundary, where the flux should decay exponentially at a rate proportional to 1/epsilon. Relations valid for an arbitrary number of moments, and that contain earlier results for low-order neutronics methods as special cases, are derived for slab geometry. Preliminary conclusions are also drawn on the asymptotic and boundary-layer behaviors of the two finite moments algorithms in (x-y) geometry. Similar results are discussed for the finite moments algorithms to solve the time-dependent Boltzmann equation. The finite moments nodal integral scheme appears to be vastly superior to conventional deterministic schemes and higher order truncated balance schemes in optically thick problems.
引用
收藏
页码:321 / 335
页数:15
相关论文
共 50 条
  • [41] The dependence of the radiative characteristics of optically thick media on the shape of particles
    Kokhanovsky, AA
    Macke, A
    JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 1999, 63 (2-6): : 393 - 407
  • [42] Spiky structure of coherent emission from optically thick media
    Basharov, A. M.
    Grigoryan, G. G.
    Znamenskiy, N. V.
    Manykin, E. A.
    Orlov, Yu. V.
    Shashkov, A. Yu.
    Yukina, T. G.
    JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS, 2006, 102 (02) : 206 - 219
  • [43] Line shapes of saturated absorption spectroscopy in optically thick media
    Di Lorenzo, O
    Leite, JRR
    PHYSICAL REVIEW A, 1998, 58 (02): : 1139 - 1145
  • [44] Local radiative hydrodynamic and magnetohydrodynamic instabilities in optically thick media
    Blaes, O
    Socrates, A
    ASTROPHYSICAL JOURNAL, 2003, 596 (01): : 509 - 537
  • [45] Nonlinear magneto-optical rotation in optically thick media
    Rochester, SM
    Budker, D
    JOURNAL OF MODERN OPTICS, 2002, 49 (14-15) : 2543 - 2553
  • [46] Hybrid Formulation of Radiation Transport in Optically Thick Divertor Plasmas
    Rosato, J.
    Marandet, Y.
    Bufferand, H.
    Reiter, D.
    Stamm, R.
    CONTRIBUTIONS TO PLASMA PHYSICS, 2016, 56 (6-8) : 663 - 668
  • [47] A PROBABILISTIC MODEL FOR CONTINUUM TRANSPORT IN DENSE, OPTICALLY THICK PLASMAS
    CLARK, RW
    DAVIS, J
    APRUZESE, JP
    GIULIANI, JL
    JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 1995, 53 (03): : 307 - 320
  • [48] Numerical analysis of spatial moments for reactive transport through fractured porous media
    Sharma, Pramod Kumar
    Srivastava, Rajesh
    ISH Journal of Hydraulic Engineering, 2014, 20 (03) : 278 - 290
  • [49] PSEUDOSCALAR TRANSPORT COEFFICIENT IN OPTICALLY ACTIVE MEDIA
    POMEAU, Y
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE B, 1971, 272 (17): : 993 - &
  • [50] Finite element analysis of consolidation and contaminant transport in porous media
    Loroy, JJC
    Soga, K
    Savvidou, C
    Britto, AM
    ENVIRONMENTAL GEOTECHNICS, VOL 1, 1996, : 263 - 268