Self-supervised learning for fair recommender systems

被引:0
|
作者
Liu, Haifeng [1 ]
Lin, Hongfei [1 ]
Fan, Wenqi [2 ]
Ren, Yuqi [3 ]
Xu, Bo [1 ]
Zhang, Xiaokun [1 ]
Wen, Dongzhen [1 ]
Zhao, Nan [1 ]
Lin, Yuan [4 ]
Yang, Liang [1 ]
机构
[1] Dalian Univ Technol, Dept Comp Sci, Dalian, Liaoning, Peoples R China
[2] Hong Kong Polytech Univ, Dept Comp Sci, Hong Kong, Peoples R China
[3] Tianjin Univ, Dept Comp Sci, Tianjin, Peoples R China
[4] Dalian Univ Technol, Fac Humanities & Social Sci, Dalian, Liaoning, Peoples R China
关键词
Fairness representation; Recommender systems; Self-supervised learning;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Data-driven recommender algorithms are widely used in many systems, such as e-commerce recommender systems and movie recommendation systems. However, these systems could be affected by data bias, which leads to unfair recommendations for different groups of users. To address this problem, we propose a group rank fair recommender (GRFRec) method to mitigate the unfairness of recommender algorithms. We design a self-supervised learning framework to enhance user representation from both global and local views for fair results. In addition, adversarial learning is introduced to eliminate group-specific information and results in an unbiased user-item representation space, which avoids some groups suffering from unfair treatment in recommender results. Experimental results on three real-world datasets demonstrate that GRFRec can not only significantly improve fairness but also attain better results on the recommendation accuracy. (C) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Self-supervised Learning: A Succinct Review
    Rani, Veenu
    Nabi, Syed Tufael
    Kumar, Munish
    Mittal, Ajay
    Kumar, Krishan
    ARCHIVES OF COMPUTATIONAL METHODS IN ENGINEERING, 2023, 30 (04) : 2761 - 2775
  • [32] Audio self-supervised learning: A survey
    Liu, Shuo
    Mallol-Ragolta, Adria
    Parada-Cabaleiro, Emilia
    Qian, Kun
    Jing, Xin
    Kathan, Alexander
    Hu, Bin
    Schuller, Bjorn W.
    PATTERNS, 2022, 3 (12):
  • [33] MarioNette: Self-Supervised Sprite Learning
    Smirnov, Dmitriy
    Gharbi, Michael
    Fisher, Matthew
    Guizilini, Vitor
    Efros, Alexei A.
    Solomon, Justin
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021, 34
  • [34] Self-supervised learning for outlier detection
    Diers, Jan
    Pigorsch, Christian
    STAT, 2021, 10 (01):
  • [35] Self-supervised Learning: A Succinct Review
    Veenu Rani
    Syed Tufael Nabi
    Munish Kumar
    Ajay Mittal
    Krishan Kumar
    Archives of Computational Methods in Engineering, 2023, 30 : 2761 - 2775
  • [36] Self-Supervised Learning for Multimedia Recommendation
    Tao, Zhulin
    Liu, Xiaohao
    Xia, Yewei
    Wang, Xiang
    Yang, Lifang
    Huang, Xianglin
    Chua, Tat-Seng
    IEEE TRANSACTIONS ON MULTIMEDIA, 2023, 25 : 5107 - 5116
  • [37] Whitening for Self-Supervised Representation Learning
    Ermolov, Aleksandr
    Siarohin, Aliaksandr
    Sangineto, Enver
    Sebe, Nicu
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 139, 2021, 139
  • [38] Self-Supervised Learning in Remote Sensing
    Wang, Yi
    Albrecht, Conrad M.
    Ait Ali Braham, Nassim
    Mou, Lichao
    Zhu, Xiao Xiang
    IEEE GEOSCIENCE AND REMOTE SENSING MAGAZINE, 2022, 10 (04) : 213 - 247
  • [39] Relational Self-Supervised Learning on Graphs
    Lee, Namkyeong
    Hyun, Dongmin
    Lee, Junseok
    Park, Chanyoung
    PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, CIKM 2022, 2022, : 1054 - 1063
  • [40] Self-supervised Graph Learning for Recommendation
    Wu, Jiancan
    Wang, Xiang
    Feng, Fuli
    He, Xiangnan
    Chen, Liang
    Lian, Jianxun
    Xie, Xing
    SIGIR '21 - PROCEEDINGS OF THE 44TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, 2021, : 726 - 735