BEHAVIOR OF AN OSCILLATOR WITH EVEN NONLINEAR DAMPING

被引:4
|
作者
HOLMES, PJ [1 ]
机构
[1] UNIV SOUTHAMPTON, INST SOUND & VIBRAT RES, SOUTHAMPTON SO9 5NH, HAMPSHIRE, ENGLAND
关键词
D O I
10.1016/0020-7462(77)90008-7
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
引用
收藏
页码:323 / 326
页数:4
相关论文
共 50 条
  • [21] The resonant behavior in the oscillator with double fractional-order damping under the action of nonlinear multiplicative noise
    Tian, Yan
    Zhong, Lin-Feng
    He, Gui-Tian
    Yu, Tao
    Luo, Mao-Kang
    Stanley, H. Eugene
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2018, 490 : 845 - 856
  • [22] Oscillation of even order nonlinear functional differential equations with damping
    Tang, Y
    Yang, Q
    [J]. ACTA MATHEMATICA HUNGARICA, 2004, 102 (03) : 223 - 238
  • [23] Oscillation of even order nonlinear functional differential equations with damping
    Yun Tang
    Qigui Yang
    [J]. Acta Mathematica Hungarica, 2004, 102 : 223 - 238
  • [24] Oscillation of even order nonlinear neutral differential equations with damping
    Yilmaz, YS
    Zafer, A
    [J]. MATHEMATICAL INEQUALITIES & APPLICATIONS, 1998, 1 (03): : 445 - 451
  • [25] Fractional damping induces resonant behavior in the Duffing oscillator
    Coccolo, Mattia
    Seoane, Jesus M.
    Sanjuan, Miguel A. F.
    [J]. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2024, 133
  • [26] Nonlinear dynamic response characteristics of SD oscillator with fractional damping
    Chen E.-L.
    Wang M.-H.
    Wang M.-Q.
    Chang Y.-J.
    [J]. Zhendong Gongcheng Xuebao/Journal of Vibration Engineering, 2022, 35 (05): : 1068 - 1075
  • [27] Chaos in the quasiperiodically excited softening duffing oscillator with nonlinear damping
    Lou, JJ
    Zhu, SJ
    Liu, SY
    [J]. DYNAMICS OF CONTINUOUS DISCRETE AND IMPULSIVE SYSTEMS-SERIES B-APPLICATIONS & ALGORITHMS, 2005, 1 : 73 - 77
  • [28] Large-amplitude oscillations of a nonlinear asymmetric oscillator with damping
    Fabry, C
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2001, 44 (05) : 613 - 626
  • [29] The nonlinear Schrodinger harmonic oscillator problem with small odd or even disturbances
    Zheng, Liancun
    Wang, Tongtong
    Zhang, Xinxin
    Ma, Lianxi
    [J]. APPLIED MATHEMATICS LETTERS, 2013, 26 (04) : 463 - 468
  • [30] Vibration suppression of a linear oscillator by a chain of nonlinear vibration absorbers with geometrically nonlinear damping
    Liu, Yang
    Wang, Yong
    [J]. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2023, 118