DEFORMED OSCILLATOR ALGEBRAS FOR 2-DIMENSIONAL QUANTUM SUPERINTEGRABLE SYSTEMS

被引:145
|
作者
BONATSOS, D [1 ]
DASKALOYANNIS, C [1 ]
KOKKOTAS, K [1 ]
机构
[1] ARISTOTELIAN UNIV THESSALONIKI, DEPT PHYS, GR-54006 THESSALONIKI, GREECE
来源
PHYSICAL REVIEW A | 1994年 / 50卷 / 05期
关键词
D O I
10.1103/PhysRevA.50.3700
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Quantum superintegrable systems in two dimensions are obtained from their classical counterparts, the quantum integrals of motion being obtained from the corresponding classical integrals by a symmetrization procedure. For each quantum superintegrable system a deformed oscillator algebra, characterized by a structure function specific for each system, is constructed, the generators of the algebra being functions of the quantum integrals of motion. The energy eigenvalues corresponding to a state with finite-dimensional degeneracy can then be obtained in an economical way from solving a system of two equations satisfied by the structure function, the results being in agreement to the ones obtained from the solution of the relevant Schrödinger equation. Applications to the harmonic oscillator in a flat space and in a curved space with constant curvature, the Kepler problem in a flat or curved space, the Fokas-Lagerstrom potential, the Smorodinsky-Winternitz potential, and the Holt potential are given. The method shows how quantum-algebraic techniques can simplify the study of quantum superintegrable systems, especially in higher dimensions. © 1994 The American Physical Society.
引用
收藏
页码:3700 / 3709
页数:10
相关论文
共 50 条
  • [21] Quadratic algebras for three-dimensional superintegrable systems
    C. Daskaloyannis
    Y. Tanoudis
    Physics of Atomic Nuclei, 2010, 73 : 214 - 221
  • [22] Symmetries and integrals of motion of a superintegrable deformed oscillator
    Gonera, Joanna
    Jasinski, Artur
    Kosinski, Piotr
    ANNALS OF PHYSICS, 2021, 427
  • [23] Function algebras on a 2-dimensional quantum complex plane
    Cohen, I.
    Wagner, E.
    XXII INTERNATIONAL CONFERENCE ON INTEGRABLE SYSTEMS AND QUANTUM SYMMETRIES (ISQS-22), 2014, 563
  • [24] Models of quadratic quantum algebras and their relation to classical superintegrable systems
    E. G. Kalnins
    W. Miller
    S. Post
    Physics of Atomic Nuclei, 2009, 72 : 801 - 808
  • [25] Models of quadratic quantum algebras and their relation to classical superintegrable systems
    Kalnins, E. G.
    Miller, W., Jr.
    Post, S.
    PHYSICS OF ATOMIC NUCLEI, 2009, 72 (05) : 801 - 808
  • [26] Superintegrable systems on the loop algebras
    Tsiganov, AV
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1998, 31 (08): : 2075 - 2092
  • [27] Symmetry algebras for superintegrable systems
    Gonera, C
    Kosínski, P
    Majewski, M
    Maslanka, P
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (02): : 343 - 349
  • [28] Conservative algebras of 2-dimensional algebras
    Kaygorodov, Ivan
    Lopatin, Artem
    Popov, Yury
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2015, 486 : 255 - 274
  • [29] Intertwining Symmetry Algebras of Quantum Superintegrable Systems on Constant Curvature Spaces
    Calzada, J. A.
    Kuru, S.
    Negro, J.
    del Olmo, M. A.
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2011, 50 (07) : 2067 - 2073
  • [30] Intertwining Symmetry Algebras of Quantum Superintegrable Systems on Constant Curvature Spaces
    J. A. Calzada
    Ş. Kuru
    J. Negro
    M. A. del Olmo
    International Journal of Theoretical Physics, 2011, 50 : 2067 - 2073