A LOW-ORDER EMBEDDED RUNGE-KUTTA METHOD FOR PERIODIC INITIAL-VALUE PROBLEMS

被引:25
|
作者
SIDERIDIS, AB [1 ]
SIMOS, TE [1 ]
机构
[1] AGR UNIV ATHENS,INFORMAT LAB,GR-17564 ATHENS,GREECE
关键词
RUNGE-KUTTA; PHASE-LAG; AMPLIFICATION FACTOR; ERROR ESTIMATION; EMBEDDED METHODS;
D O I
10.1016/0377-0427(92)90013-N
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An embedded Runge-Kutta-Fehlberg method is developed. It should be noted that this embedded method is' procuced using the Runge-Kutta-Fehlberg method with algebraic order four to estimate a truncation phase-lag error of algebraic order three. The numerical results indicate that this new method is efficient for the numerical solution of differential equations with periodic solution, using variable stepsize.
引用
收藏
页码:235 / 244
页数:10
相关论文
共 50 条
  • [41] RUNGE-KUTTA METHOD OF ORDER 10
    HAIRER, E
    JOURNAL OF THE INSTITUTE OF MATHEMATICS AND ITS APPLICATIONS, 1978, 21 (01): : 47 - 59
  • [42] A Fifth Order Phase-Fitted Runge-Kutta-Nystrom Method for Periodic Initial Value Problems
    Mohamad, M.
    Senu, N.
    Suleiman, M.
    Ismail, F.
    INTERNATIONAL CONFERENCE ON MATHEMATICAL SCIENCES AND STATISTICS 2013 (ICMSS2013), 2013, 1557 : 229 - 232
  • [43] The positivity of low-order explicit Runge-Kutta schemes applied in splitting methods
    Gerisch, A
    Weiner, R
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2003, 45 (1-3) : 53 - 67
  • [44] RUNGE-KUTTA-NYSTROM INTERPOLANTS FOR THE NUMERICAL-INTEGRATION OF SPECIAL 2ND-ORDER PERIODIC INITIAL-VALUE PROBLEMS
    SIMOS, TE
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1993, 26 (12) : 7 - 15
  • [45] Locally Linearized Runge-Kutta method of Dormand and Prince for large systems of initial value problems
    Naranjo-Noda, F. S.
    Jimenez, J. C.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2021, 426
  • [46] A Runge-Kutta numericalmethod to approximate the solution of bipolar fuzzy initial value problems
    Saqib, Muhammad
    Akram, Muhammad
    Bashir, Shahida
    Allahviranloo, Tofigh
    COMPUTATIONAL & APPLIED MATHEMATICS, 2021, 40 (04):
  • [47] Third-order composite Runge-Kutta method for stiff problems
    Ahmad, RR
    Yaacob, N
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2005, 82 (10) : 1221 - 1226
  • [48] On the solution of singular initial value problems in ordinary differential equations using a new third order inverse Runge-Kutta method
    Agbeboh, G. U.
    Omonkaro, B.
    INTERNATIONAL JOURNAL OF PHYSICAL SCIENCES, 2010, 5 (04): : 299 - 307
  • [49] A 4(3) Pair Runge-Kutta-Nystrom Method for Periodic Initial Value Problems
    Senu, Norazak
    Suleiman, Mohamed
    Ismail, Fudziah
    Othman, Mohamed
    SAINS MALAYSIANA, 2010, 39 (04): : 639 - 646
  • [50] Solving First Order Fuzzy Initial Value Problem by Fourth Order Runge-Kutta Method Based on Different Means
    Abadi, Maryam Asghari Hemmat
    Cao, Bing Yuan
    FUZZY INFORMATION AND ENGINEERING AND DECISION, 2018, 646 : 356 - 369