UNIVERSAL PROPERTIES OF VORONOI TESSELLATIONS OF HARD DISKS

被引:33
|
作者
GERVOIS, A [1 ]
TROADEC, JP [1 ]
LEMAITRE, J [1 ]
机构
[1] UNIV RENNES 1,SPM,UFR,CNRS,URA 040804,MAT CONDENSEE & MAT GRP,F-35042 RENNES,FRANCE
来源
关键词
D O I
10.1088/0305-4470/25/23/014
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We describe a 21) mosaic obtained by the Voronoi tessellation of a monosize assembly of discs at different packing fractions. The experimental device (hard discs moving on an air table) produces, for every packing fraction, a succession of mosaics in statistical equilibrium, which constitutes a statistical ensemble. This ensemble is large enough for fluctuations from the most probable distributions to be negligible. We use the maximum entropy principle to get the distribution of the polygons in 2D mosaics generated from an assembly of hard discs. Steric exclusion yields an extra conservation law, which is sufficient to give a good agreement with the experimental data. A similar behaviour in the six-fold parameter seems to hold for other mosaics.
引用
收藏
页码:6169 / 6177
页数:9
相关论文
共 50 条
  • [21] FINDING NEAREST NEIGHBORS WITH VORONOI TESSELLATIONS
    MURPHY, OJ
    SELKOW, SM
    INFORMATION PROCESSING LETTERS, 1990, 34 (01) : 37 - 41
  • [22] Constrained centroidal Voronoi tessellations for surfaces
    Du, Q
    Gunzburger, MD
    Ju, LL
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2003, 24 (05): : 1488 - 1506
  • [23] Centroidal Voronoi tessellations: Applications and algorithms
    Du, Q
    Faber, V
    Gunzburger, M
    SIAM REVIEW, 1999, 41 (04) : 637 - 676
  • [24] Symmetry-Break in Voronoi Tessellations
    Lucarini, Valerio
    SYMMETRY-BASEL, 2009, 1 (01): : 21 - 54
  • [25] Statistics of cross sections of Voronoi tessellations
    Ferraro, M.
    Zaninetti, L.
    PHYSICAL REVIEW E, 2011, 84 (04):
  • [26] ON THE CHARACTERIZATION AND UNIQUENESS OF CENTROIDAL VORONOI TESSELLATIONS
    Urschel, John C.
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2017, 55 (03) : 1525 - 1547
  • [27] Voronoi and Voronoi-related tessellations in studies of protein structure and interaction
    Poupon, A
    CURRENT OPINION IN STRUCTURAL BIOLOGY, 2004, 14 (02) : 233 - 241
  • [28] Asymptotics for statistical distances based on Voronoi tessellations
    Jiménez, R
    Yukich, JE
    JOURNAL OF THEORETICAL PROBABILITY, 2002, 15 (02) : 503 - 541
  • [29] Congruent Voronoi tessellations from equiangular lines
    Mondal, Bishwarup
    Samanta, Roopsha
    Heath, Robert W., Jr.
    APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2007, 23 (02) : 254 - 258
  • [30] Voronoi Tessellations and the Shannon Entropy of the Pentagonal Tilings
    Bormashenko, Edward
    Legchenkova, Irina
    Frenkel, Mark
    Shvalb, Nir
    Shoval, Shraga
    ENTROPY, 2023, 25 (01)