Markov interlacing property for perfect splines

被引:5
|
作者
Bojanov, B [1 ]
机构
[1] Univ Sofia, Dept Math, Sofia 1164, Bulgaria
关键词
interlacing property; perfect splines; VA Markov; Tchebycheff systems;
D O I
10.1006/jath.1999.3321
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that if the zeros of two perfect splines p and q interlace, then the zeros of p' and q' also interlace. This is an extension of the classical result concerning algebraic polynomials proved by V. A. Markov. (C) 1999 Academic Press.
引用
收藏
页码:183 / 201
页数:19
相关论文
共 50 条
  • [42] On Maximally Oscillating Perfect Splines and Some of Their Extremal Properties
    O. Kovalenko
    Analysis Mathematica, 2020, 46 : 555 - 577
  • [43] PERFECT SPLINES WITH BOUNDARY-CONDITIONS OF LEAST NORM
    CHEN, DR
    JOURNAL OF APPROXIMATION THEORY, 1994, 77 (02) : 191 - 201
  • [44] A de-interlacing algorithm using Markov random field model
    Li, Min
    Nguyen, Truong
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2007, 16 (11) : 2633 - 2648
  • [45] INTERLACING-PROPERTY OF BINARY SEQUENCES GENERATED BY AN IRREDUCIBLE POLYNOMIAL
    SURBOCK, F
    WEINRICHTER, H
    AEU-INTERNATIONAL JOURNAL OF ELECTRONICS AND COMMUNICATIONS, 1976, 30 (12): : 484 - 489
  • [46] Interlacing Property of a Family of Generating Polynomials over Dyck Paths
    Wang, Bo
    Zhang, Candice X. T.
    ELECTRONIC JOURNAL OF COMBINATORICS, 2024, 31 (01):
  • [47] The inverse nullity pair problem and the strong nullity interlacing property
    Abiad, Aida
    Curtis, Bryan A.
    Flagg, Mary
    Hall, H. Tracy
    Lin, Jephian C. -H.
    Shader, Bryan
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2024, 699 : 539 - 568
  • [48] Stability analysis of systems with complex coefficients based on an interlacing property
    Marquez, HJ
    Agathoklis, P
    1998 IEEE SYMPOSIUM ON ADVANCES IN DIGITAL FILTERING AND SIGNAL PROCESSING, 1998, : 154 - 158
  • [49] PERFECT SAMPLING FOR NONHOMOGENEOUS MARKOV CHAINS AND HIDDEN MARKOV MODELS
    Whiteley, Nick
    Lee, Anthony
    ANNALS OF APPLIED PROBABILITY, 2016, 26 (05): : 3044 - 3077
  • [50] NOTIONS OF MARKOV PROPERTY
    EKHAGUERE, GOS
    JOURNAL OF MATHEMATICAL PHYSICS, 1977, 18 (11) : 2104 - 2107