INTEGRAL MANIFOLDS OF THE N-BODY PROBLEM

被引:29
|
作者
ALBOUY, A
机构
[1] URA 212, Tour 45-55, porte 512, Université Paris 7, Paris Cedex 05, F-75251
关键词
D O I
10.1007/BF01232677
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
[No abstract available]
引用
收藏
页码:463 / 488
页数:26
相关论文
共 50 条
  • [31] THE GLOBAL SOLUTION OF THE N-BODY PROBLEM
    Wang Qiu-Dong
    CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 1990, 50 (01): : 73 - 88
  • [32] On the probabilistic approach to the N-body problem
    Romero, M.
    Ascasibar, Y.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2018, 479 (03) : 4225 - 4238
  • [33] Unchained polygons and the N-body problem
    Chenciner, A.
    Fejoz, J.
    REGULAR & CHAOTIC DYNAMICS, 2009, 14 (01): : 64 - 115
  • [34] Geodesic Rays of the N-Body Problem
    J. M. Burgos
    E. Maderna
    Archive for Rational Mechanics and Analysis, 2022, 243 : 807 - 827
  • [35] Permanent configurations in the n-body problem
    Holtom, Carl
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1943, 54 (1-3) : 520 - 543
  • [36] ON QUANTUM MECHANICAL N-BODY PROBLEM
    HEPP, K
    HELVETICA PHYSICA ACTA, 1969, 42 (03): : 425 - &
  • [37] SOME REGULARIZATION IN THE N-BODY PROBLEM
    DIACU, FN
    ASTRONOMISCHE NACHRICHTEN, 1987, 308 (02) : 163 - 168
  • [38] Four lectures on the N-body problem
    Chenciner, Alain
    HAMILTONIAN DYNAMICAL SYSTEMS AND APPLICATIONS, 2008, : 21 - 52
  • [39] Busemann Functions for the N-Body Problem
    Boris Percino
    Héctor Sánchez-Morgado
    Archive for Rational Mechanics and Analysis, 2014, 213 : 981 - 991
  • [40] EXISTENCE OF THE CONTINUATIONS IN THE N-BODY PROBLEM
    BABADZANJANZ, LK
    CELESTIAL MECHANICS, 1979, 20 (01): : 43 - 57