The incorporation of dissolved oceanic constituents in the otoliths of fish has potential as a chemical tracer for reconstructing the early life history of marine fish. Wavelength dispersive spectrometers on an electron microprobe were used to measure Na, Mg, P, S, Cl, K, Ca, and Sr concentrations on the outer margins of 57 juvenile walleye pollock, Theragra chalcogramma, otoliths from five locations in the Gulf of Alaska and Bering Sea. Discriminant analyses that used various combinations of Na, P, K, Sr, and fish standard length and/or age showed that 60-80% of the samples could be assigned to the correct capture locality. While the concentrations of some of the measured elements correlated with standard length or age of the fish, there are measurable differences among localities when concentrations are length or age corrected, mainly clue to differences in Na and K concentrations. Elemental composition of otoliths potentially could be used to assign fish from a mixed stock fishery to original stocks, information that is greatly needed for the effective management of fish stocks.