OPTIMAL GENERALIZED LOGARITHMIC MEAN BOUNDS FOR THE GEOMETRIC COMBINATION OF ARITHMETIC AND HARMONIC MEANS

被引:0
|
作者
Long, Bo-Yong [1 ]
Chu, Yu-Ming [2 ]
机构
[1] Anhui Univ, Coll Math Sci, Hefei 230039, Peoples R China
[2] Huzhou Teachers Coll, Dept Math, Huzhou 313000, Peoples R China
关键词
Generalized logarithmic mean; arithmetic mean; harmonic mean;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we answer the question: for alpha is an element of (0,1), what are the greatest value p = p (alpha) and least value q = q (alpha), such that the double inequality L-p(a, b) <= A(alpha)(a, b)H1-alpha(a, b) <= L-q (a, b) holds for all a, b > 0? where L-p (a, b), A(a, b), and H(a, b) are the p-th generalized logarithmic, arithmetic, and harmonic means of a and b, respectively.
引用
下载
收藏
页码:85 / 96
页数:12
相关论文
共 50 条
  • [31] THE OPTIMAL GENERALIZED LOGARITHMIC MEAN BOUNDS FOR SEIFFERT'S MEAN
    Chu Yuming
    Wang Miaokun
    Wang Gendi
    ACTA MATHEMATICA SCIENTIA, 2012, 32 (04) : 1619 - 1626
  • [32] THE OPTIMAL GENERALIZED LOGARITHMIC MEAN BOUNDS FOR SEIFFERT’S MEAN
    褚玉明
    王淼坤
    王根娣
    Acta Mathematica Scientia, 2012, (04) : 1619 - 1626
  • [33] Sharp Bounds for the Weighted Geometric Mean of the First Seiffert and Logarithmic Means in terms of Weighted Generalized Heronian Mean
    Matejicka, Ladislav
    ABSTRACT AND APPLIED ANALYSIS, 2013,
  • [34] HARMONIC, GEOMETRIC, AND ARITHMETIC MEANS IN GENERALIZED FIBONACCI SEQUENCES
    SCHOEN, R
    FIBONACCI QUARTERLY, 1984, 22 (04): : 354 - 357
  • [35] SHARP TWO PARAMETER BOUNDS FOR THE LOGARITHMIC MEAN AND THE ARITHMETIC-GEOMETRIC MEAN OF GAUSS
    Chu, Yu-Ming
    Wang, Miao-Kun
    Qiu, Ye-Fang
    Ma, Xiao-Yan
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2013, 7 (03): : 349 - 355
  • [36] BOUNDS OF THE PERIMETER OF AN ELLIPSE USING ARITHMETIC, GEOMETRIC AND HARMONIC MEANS
    Wang, Miao-Kun
    Chu, Yu-Ming
    Jiang, Yue-Ping
    Qiu, Song-Liang
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2014, 17 (01): : 101 - 111
  • [37] Sharp bounds for the Toader mean in terms of arithmetic and geometric means
    Yang, Zhen-Hang
    Tian, Jing-Feng
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2021, 115 (03)
  • [38] Sharp bounds for the Toader mean in terms of arithmetic and geometric means
    Zhen-Hang Yang
    Jing-Feng Tian
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2021, 115
  • [39] Some Optimal Convex Combination Bounds for Arithmetic Mean
    Gao Hongya
    Xue Ruihong
    KYUNGPOOK MATHEMATICAL JOURNAL, 2014, 54 (04): : 521 - 529
  • [40] Optimal bounds for Neuman means in terms of geometric, arithmetic and quadratic means
    Wei-Mao Qian
    Yu-Ming Chu
    Journal of Inequalities and Applications, 2014