NUMBER OF STABLE EQUILIBRIUM STATES OF CELLULAR NEURAL NETWORKS

被引:5
|
作者
KALUZNY, P
机构
[1] Institut de Physiologie, Universite de Fribourg, Fribourg
关键词
D O I
10.1109/81.317960
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this report we present an explicit formula for the number of stable equilibrium states of one dimensional cellular neural networks. It is based on the equivalence of stable equilibrium states and paths in a graph representing neighborhood consistency conditions.
引用
收藏
页码:608 / 610
页数:3
相关论文
共 50 条
  • [21] Analysis on equilibrium points of cellular neural networks with thresholding activation function
    Han, Qi
    Liao, Xiaofeng
    Weng, Tengfei
    Peng, Jun
    Li, Chuandong
    Feng, Liping
    NEURAL COMPUTING & APPLICATIONS, 2013, 23 (01): : 23 - 29
  • [22] Analysis on equilibrium points of cellular neural networks with thresholding activation function
    Qi Han
    Xiaofeng Liao
    Tengfei Weng
    Jun Peng
    Chuandong Li
    Liping Feng
    Neural Computing and Applications, 2013, 23 : 23 - 29
  • [23] HETEROGENEOUS ALOHA NETWORKS - A SUFFICIENT CONDITION FOR ALL EQUILIBRIUM STATES TO BE STABLE
    WANG, XY
    KANIYIL, J
    ONOZATO, Y
    NOGUCHI, S
    COMPUTER NETWORKS AND ISDN SYSTEMS, 1991, 22 (03): : 213 - 224
  • [24] Stationary processes and equilibrium states in non-symmetric neural networks
    Castellanos, A
    Viana, L
    REVISTA MEXICANA DE FISICA, 2002, 48 (04) : 310 - 316
  • [25] Equilibrium Analysis for Improved Signal Range Model of Delayed Cellular Neural Networks
    Liping Li
    Lihong Huang
    Neural Processing Letters, 2010, 31 : 177 - 194
  • [26] Stability of Equilibrium Points in Cellular Neural Networks with Negative Slope Activation Function
    Han, Qi
    Xiong, Qian
    Liu, Chao
    Peng, Jun
    Song, Lepeng
    Liu, Sijing
    JOURNAL OF COMPUTERS, 2014, 9 (04) : 891 - 895
  • [27] Equilibrium Analysis for Improved Signal Range Model of Delayed Cellular Neural Networks
    Li, Liping
    Huang, Lihong
    NEURAL PROCESSING LETTERS, 2010, 31 (03) : 177 - 194
  • [28] NUMBER OF STABLE POINTS FOR SPIN-GLASSES AND NEURAL NETWORKS OF HIGHER ORDERS
    BALDI, P
    VENKATESH, SS
    PHYSICAL REVIEW LETTERS, 1987, 58 (09) : 913 - 916
  • [29] RTD-based cellular neural networks with multiple steady states
    Itoh, M
    Julián, P
    Chua, LO
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2001, 11 (12): : 2913 - 2959
  • [30] CELLULAR NEURAL NETWORKS
    VANDEWALLE, J
    ROSKA, T
    INTERNATIONAL JOURNAL OF CIRCUIT THEORY AND APPLICATIONS, 1992, 20 (05) : 449 - 451