ON IMPROVING THE 2-4 TWO-DIMENSIONAL LEAP-FROG SCHEME

被引:1
|
作者
ABARBANEL, S [1 ]
GOTTLIEB, D [1 ]
机构
[1] NASA,LANGLEY RES CTR,INST COMP APPL SCI & ENGN,HAMPTON,VA 23665
关键词
D O I
10.1137/0901030
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
引用
收藏
页码:426 / 430
页数:5
相关论文
共 50 条
  • [1] Discrete transparent boundary conditions for the two-dimensional leap-frog scheme: approximation and fast implementation
    Besse, Christophe
    Coulombel, Jean-Francois
    Noble, Pascal
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2021, 55 : S535 - S571
  • [2] NOTE ON LEAP-FROG SCHEME IN 2 AND 3 DIMENSIONS
    ABARBANEL, S
    GOTTLIEB, D
    JOURNAL OF COMPUTATIONAL PHYSICS, 1976, 21 (03) : 351 - 355
  • [3] Analysis of a leap-frog pseudospectral scheme for the Schrodinger equation
    Borzi, A
    Decker, E
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2006, 193 (01) : 65 - 88
  • [4] Staggered grid leap-frog scheme for the (2+1)D Dirac equation
    Hammer, Rene
    Poetz, Walter
    COMPUTER PHYSICS COMMUNICATIONS, 2014, 185 (01) : 40 - 52
  • [5] Stiff-cut leap-frog scheme for fractional Laplacian diffusion
    Sun, Tao
    Sun, Hai-Wei
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2024, 451
  • [6] Modified leap-frog scheme for linear shallow-water equations
    Cho, Yong-Sik
    Yoon, Sung Bum
    Coastal Engineering Journal, 1998, 40 (02): : 191 - 205
  • [7] A Crank-Nicolson leap-frog scheme for the unsteady incompressible magnetohydrodynamics equations
    Si, Zhiyong
    Wang, Mingyi
    Wang, Yunxia
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2024, 134
  • [8] Leap-frog patterns in systems of two coupled FitzHugh-Nagumo units
    Eydam, Sebastian
    Franovic, Igor
    Wolfrum, Matthias
    PHYSICAL REVIEW E, 2019, 99 (04)
  • [9] A 2-D Leap-Frog Algorithm for optimal surface reconstruction
    Noakes, L
    Kozera, R
    VISION GEOMETRY VIII, 1999, 3811 : 317 - 328
  • [10] A Continuous-Stage Modified Leap-Frog Scheme for High-Dimensional Semi-Linear Hamiltonian Wave Equations
    Wang, Bin
    Wu, Xinyuan
    Fang, Yonglei
    NUMERICAL MATHEMATICS-THEORY METHODS AND APPLICATIONS, 2020, 13 (03) : 814 - 844