On regular hypergraphs with high girth and high chromatic number

被引:0
|
作者
Khuzieva, Alina E. [1 ]
Shabanov, Dmitriy A. [2 ]
机构
[1] State Univ, Moscow Inst Phys & Technol, Moscow, Russia
[2] Moscow MV Lomonosov State Univ, Moscow 117234, Russia
来源
DISCRETE MATHEMATICS AND APPLICATIONS | 2015年 / 25卷 / 05期
关键词
hypergraph; colouring of hypergraphs; sparse hypergraphs; random recolouring method; girth of a hypergraph;
D O I
10.1515/dma-2015-0027
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The paper is concerned with an extremal problem of combinatorial analysis on finding the minimal possible number of edges in an n-regular hypergraph with chromatic number greater than r and girth greater than s. A new lower estimate of this extremal value is obtained and a number of related results is proved.
引用
收藏
页码:277 / 294
页数:18
相关论文
共 50 条
  • [31] Chromatic Ramsey number of acyclic hypergraphs
    Gyarfas, Andras
    Riasanovsky, Alexander W. N.
    Sherman-Bennett, Melissa U.
    DISCRETE MATHEMATICS, 2017, 340 (03) : 373 - 378
  • [32] On the chromatic number of generalized Kneser hypergraphs
    Daneshpajouh, Hamid Reza
    EUROPEAN JOURNAL OF COMBINATORICS, 2019, 81 : 150 - 155
  • [33] On the Strong Chromatic Number of Random Hypergraphs
    T. G. Matveeva
    A. E. Khuzieva
    D. A. Shabanov
    Doklady Mathematics, 2022, 105 : 31 - 34
  • [34] On The Chromatic Number of Some Geometric Hypergraphs
    Smorodinsky, Shakhar
    PROCEEDINGS OF THE SEVENTHEENTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2006, : 316 - 323
  • [35] CRITICAL HYPERGRAPHS FOR THE WEAK CHROMATIC NUMBER
    BENZAKEN, C
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 1980, 29 (03) : 328 - 338
  • [36] On the weak chromatic number of random hypergraphs
    Semenov, Alexander
    Shabanov, Dmitry
    DISCRETE APPLIED MATHEMATICS, 2020, 276 : 134 - 154
  • [37] On the Strong Chromatic Number of Random Hypergraphs
    Matveeva, T. G.
    Khuzieva, A. E.
    Shabanov, D. A.
    DOKLADY MATHEMATICS, 2022, 105 (01) : 31 - 34
  • [38] On the chromatic number of general Kneser hypergraphs
    Alishahi, Meysam
    Hajiabolhassan, Hossein
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2015, 115 : 186 - 209
  • [39] On a construction of graphs with high chromatic capacity and large girth
    Zhou, Bing
    DISCRETE MATHEMATICS, 2010, 310 (17-18) : 2452 - 2454
  • [40] INDEPENDENT SETS IN REGULAR GRAPHS OF HIGH GIRTH
    MCKAY, BD
    ARS COMBINATORIA, 1987, 23A : 179 - 185