BOUNDARY VALUE AND EXTREMAL PROBLEMS FOR THE NONLINEAR CONVECTION - DIFFUSION - REACTION EQUATION

被引:11
|
作者
Brizitskii, R., V [1 ,2 ]
Saritskaya, Zh. Yu [2 ]
机构
[1] Inst Appl Math FEB RAS, Str Radio 7, Vladivostok 690041, Russia
[2] Far Earstern Fed Univ, Vladivostok 690000, Russia
关键词
convection-diffusion-reaction equation; control problem; optimality system; local uniqueness;
D O I
10.17377/semi.2015.12.038
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the boundary value and optimal control problems for stationary nonlinear convection-diffusion-reaction equation, wherein reaction coefficient depends on concentration of substance. The general form of nonlinear reaction coefficient's dependence on concentration of substance is offered. Solvability of the boundary value and control problems for convection-diffusion-reaction equation is proved. Nonlocal optimality system for the quadratic nonlinearity is obtained, and local uniqueness of extremal problem's solution for a particular cost functional is proved with the help of optimality system.
引用
收藏
页码:447 / 456
页数:10
相关论文
共 50 条
  • [41] Flux Transport Characteristics of Free Boundary Value Problems for a Class of Generalized Convection-Diffusion Equation
    Xu, Yunbin
    Wei, Meihua
    ADVANCES IN MATHEMATICAL PHYSICS, 2019, 2019
  • [42] Extremal solutions of boundary value problems
    Vasil'ev, N. I.
    Lepin, A. Ya.
    Lepin, L. A.
    DIFFERENTIAL EQUATIONS, 2011, 47 (02) : 166 - 172
  • [43] Stabilizing the convection–diffusion–reaction equation via local problems
    Kaya U.
    Braack M.
    Computer Methods in Applied Mechanics and Engineering, 2022, 398
  • [44] On stability of solutions of the coefficient inverse extremal problems for the stationary convection-diffusion equation
    Alekseev G.V.
    Shepelov M.A.
    Journal of Applied and Industrial Mathematics, 2013, 7 (1) : 1 - 14
  • [45] Extremal solutions for nonlinear fractional boundary value problems with p-Laplacian
    Ding, Youzheng
    Wei, Zhongli
    Xu, Jiafa
    O'Regan, Donal
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2015, 288 : 151 - 158
  • [46] Free boundary value problems for a class of generalized diffusion equation
    Zheng, Liancun
    Zhang, Xinxin
    He, Jicheng
    Journal of University of Science and Technology Beijing: Mineral Metallurgy Materials (Eng Ed), 2002, 9 (06): : 422 - 425
  • [47] Free boundary value problems for a class of generalized diffusion equation
    Zheng, LC
    Zhang, XX
    He, JC
    JOURNAL OF UNIVERSITY OF SCIENCE AND TECHNOLOGY BEIJING, 2002, 9 (06): : 422 - 425
  • [48] THE INITIAL-BOUNDARY VALUE PROBLEMS OF NONLINEAR AND NONLOCAL SINGULARLY PERTURBED REACTION DIFFUSION SYSTEM
    Liu Shude Chen Lihua Mo Jiaqi Deptof MathAnhui Normal UniversityWuhu AnhuiDeptof MathFuqing Branch of Fujian Normal UniversityFuqing FujianDivision of Computational ScienceEInstitutes of Shanghai Universitiesat SJTUShanghai
    Annals of Differential Equations, 2008, (01) : 20 - 28
  • [49] SENSITIVITY ANALYSIS OF BOUNDARY-VALUE-PROBLEMS - APPLICATION TO NONLINEAR REACTION DIFFUSION-SYSTEMS
    REUVEN, Y
    SMOOKE, MD
    RABITZ, H
    JOURNAL OF COMPUTATIONAL PHYSICS, 1986, 64 (01) : 27 - 55
  • [50] BOUNDARY VALUE PROBLEMS OF A HIGHER ORDER NONLINEAR DIFFERENCE EQUATION
    Yang, Lianwu
    UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS, 2017, 79 (04): : 93 - 102