Generator parameter identification using evolutionary programming

被引:14
|
作者
Ma, JT
Wu, QH
机构
[1] Department of Mathematical Sciences, Loughborough University of Technology, Loughborough
关键词
parameter identification; evolutionary programming; power systems;
D O I
10.1016/0142-0615(94)00015-8
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper presents a new approach of evolutionary programming (EP) to the parameter identification problem. The EP is used to identify the generator parameters based on the measurements of generator outputs which are highly contaminated by noise. The EP is a very powerful search method and can be used for parameter identification of complex systems, by contrast to the conventional techniques such as the extended Kalman filter (EKF) method. Comparison between the two different methodologies, EP and EKF, is presented in the paper to show the potential of applications of the EP to parameter identification and system modelling.
引用
收藏
页码:417 / 423
页数:7
相关论文
共 50 条
  • [11] Parameter identification of synchronous generator by using ant colony optimization algorithm
    Sun, Lixia
    Qu, Ping
    Huang, Qixin
    Ju, Ping
    ICIEA 2007: 2ND IEEE CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS, VOLS 1-4, PROCEEDINGS, 2007, : 2834 - +
  • [12] Generator Parameter Identification Using Time Series Model and PMU Measurements
    Zhou, Tinghui
    Zhao, Ligang
    Hong, Chao
    Huang, Guanbiao
    Zhen, Hongyue
    Wang, Changxiang
    Wu, Xiaoshan
    Jing, C.
    2021 IEEE 12TH INTERNATIONAL SYMPOSIUM ON POWER ELECTRONICS FOR DISTRIBUTED GENERATION SYSTEMS (PEDG), 2021,
  • [13] Operating Generator Selection Applied for Reactive Power Dispatched using Evolutionary Programming Technique
    Abdullah, Nor Rul Hasma
    Musirin, Ismail
    Othman, Muhammad Murtadha
    PROCEEDINGS OF THE 2013 IEEE 7TH INTERNATIONAL POWER ENGINEERING AND OPTIMIZATION CONFERENCE (PEOCO2013), 2013, : 583 - 587
  • [14] Generator Parameter Identification Using Time Series Model and PMU Measurements
    Zhou, Tinghui
    Zhao, Ligang
    Hong, Chao
    Huang, Guanbiao
    Zhen, Hongyue
    Wang, Changxiang
    Wu, Xiaoshan
    Jing, C.
    2021 IEEE 12TH INTERNATIONAL SYMPOSIUM ON POWER ELECTRONICS FOR DISTRIBUTED GENERATION SYSTEMS (PEDG), 2021,
  • [15] Low velocity friction identification and compensation using accelerated evolutionary programming
    Jeon, JY
    Lee, SW
    Chae, HK
    Kim, JH
    1996 IEEE INTERNATIONAL CONFERENCE ON EVOLUTIONARY COMPUTATION (ICEC '96), PROCEEDINGS OF, 1996, : 372 - 377
  • [16] Identification of fuzzy model using evolutionary programming and least squares estimate
    Ye, B
    Guo, CX
    Cao, YJ
    2004 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS, VOLS 1-3, PROCEEDINGS, 2004, : 593 - 598
  • [17] Inelastic constitutive parameter identification using an evolutionary algorithm with continuous individuals
    Furukawa, T
    Yagawa, G
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1997, 40 (06) : 1071 - 1090
  • [18] Inelastic constitutive parameter identification using an evolutionary algorithm with continuous individuals
    Univ of Tokyo, Tokyo, Japan
    Int J Numer Methods Eng, 6 (1071-1090):
  • [19] Structure and Parameter Identification with Evolutionary Algorithms
    Braun, Jan
    Krettek, Johannes
    Hoffmann, Frank
    Bertram, Torsten
    Lausch, Horst
    Schoppel, Georg
    AT-AUTOMATISIERUNGSTECHNIK, 2011, 59 (06) : 340 - 352
  • [20] Parameter identification in nonlinear reaction diffusion equations using evolutionary algorithm
    Wu, CS
    Huang, L
    Kang, LS
    Progress in Intelligence Computation & Applications, 2005, : 44 - 49