THE HEAT-FLOW FOR HARMONIC MAPS INTO MANIFOLDS WITH BOUNDARY

被引:0
|
作者
CHEN, YM
MUSINA, R
机构
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:499 / 501
页数:3
相关论文
共 50 条
  • [31] On the Heat Flow for Harmonic Maps with Potential
    Ali Fardoun
    Andrea Ratto
    Rachid Regbaoui
    Annals of Global Analysis and Geometry, 2000, 18 : 555 - 567
  • [32] On Uniqueness of Heat Flow of Harmonic Maps
    Huang, Tao
    Wang, Changyou
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2016, 65 (05) : 1525 - 1546
  • [33] On the heat flow for harmonic maps with potential
    Fardoun, A
    Ratto, A
    Regbaoui, R
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1998, 327 (06): : 569 - 574
  • [34] On the heat flow for harmonic maps with potential
    Fardoun, A
    Ratto, A
    Regbaoui, R
    ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2000, 18 (06) : 555 - 567
  • [35] HARMONIC HEAT-FLOW IN ANISOTROPIC THIN-FILMS
    GRONBECK, H
    REICHLING, M
    JOURNAL OF APPLIED PHYSICS, 1995, 78 (11) : 6408 - 6413
  • [36] HARMONIC MAP HEAT-FLOW FOR AXIALLY SYMMETRICAL DATA
    GROTOWSKI, JF
    MANUSCRIPTA MATHEMATICA, 1991, 73 (02) : 207 - 228
  • [37] MAXIMUM PRINCIPLE FOR PARABOLIC INEQUALITIES AND THE HEAT-FLOW ON OPEN MANIFOLDS
    DODZIUK, J
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1983, 32 (05) : 703 - 716
  • [38] The harmonic map heat flow on conic manifolds
    Shao, Yuanzhen
    Wang, Changyou
    NONLINEAR DISPERSIVE WAVES AND FLUIDS, 2019, 725 : 227 - 250
  • [39] Heat flows of harmonic maps with potential into manifolds with nonpositive curvature
    Qun Chen
    Zhen-Rong Zhou
    Archiv der Mathematik, 2003, 80 : 216 - 224
  • [40] Heat equation for harmonic maps between complete Riemannian manifolds
    Fardoun, A
    Regaboui, R
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2000, 331 (04): : 299 - 304