Applicathion the Pontryagin's Maximum Principle to Optimal Economics Models

被引:1
|
作者
Troshina, N. Yu [1 ]
Troshina, S., V [2 ]
机构
[1] Saratov NG Chernyshevskii State Univ, Chair Math Econ, Saratov, Russia
[2] Home Credit & Financ Bank Ltd Liabil Co, Moscow, Russia
关键词
optimal control; model firm;
D O I
10.18500/1816-9791-2011-11-3-2-52-63
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper three models of firm are considerd as the discrete optimal control problems. The algorithm for solution is based on Pontryagins Maximum Principle. The paper contains numerical examples.
引用
收藏
页码:52 / 63
页数:12
相关论文
共 50 条
  • [41] The hybrid maximum principle is a consequence of pontryagin maximum principle
    Dmitruk, A. V.
    Kaganovich, A. M.
    [J]. SYSTEMS & CONTROL LETTERS, 2008, 57 (11) : 964 - 970
  • [42] A Generalization of Michel’s Result on the Pontryagin Maximum Principle
    Joël Blot
    Hasan Yilmaz
    [J]. Journal of Optimization Theory and Applications, 2019, 183 : 792 - 812
  • [43] On certain minimax problems and Pontryagin’s maximum principle
    Gunnar Aronsson
    [J]. Calculus of Variations and Partial Differential Equations, 2010, 37 : 99 - 109
  • [44] A New Discrete Analogue of Pontryagin's Maximum Principle
    Mardanov, M. J.
    Melikov, T. K.
    [J]. DOKLADY MATHEMATICS, 2018, 98 (03) : 549 - 551
  • [45] On certain minimax problems and Pontryagin's maximum principle
    Aronsson, Gunnar
    [J]. CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2010, 37 (1-2) : 99 - 109
  • [46] Pontryagin's maximum principle via singular perturbations
    Grammel, G
    [J]. CONTROL AND ESTIMATION OF DISTRIBUTED PARAMETER SYSTEMS, 2003, 143 : 189 - 201
  • [47] EXTENSIONS OF PONTRYAGIN MAXIMUM PRINCIPLE
    KLOTZLER, R
    [J]. LECTURE NOTES IN CONTROL AND INFORMATION SCIENCES, 1990, 143 : 321 - 331
  • [48] A New Discrete Analogue of Pontryagin’s Maximum Principle
    M. J. Mardanov
    T. K. Melikov
    [J]. Doklady Mathematics, 2018, 98 : 549 - 551
  • [49] A Generalization of Michel's Result on the Pontryagin Maximum Principle
    Blot, Joel
    Yilmaz, Hasan
    [J]. JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2019, 183 (03) : 792 - 812
  • [50] Comparing cost functions for the optimal control of robotic manipulators using Pontryagin's Maximum Principle
    Ramirez-de-Avila, Hedy Cesar
    Rojas-Quintero, Juan Antonio
    Morales-Lopez, Sergio
    Bugarin, Eusebio
    [J]. PROCEEDINGS OF THE 2021 XXIII ROBOTICS MEXICAN CONGRESS (COMROB), 2021, : 106 - 111