ON THE STABILITY OF QUASI-POLYNOMIALS WITH WEIGHTED DIAMOND COEFFICIENTS

被引:3
|
作者
HOCHERMAN, J
KHARITONOV, VL
KOGAN, J
ZEHEB, E
机构
[1] ST PETERSBURG STATE UNIV,DEPT APPL MATH & CONTROL THEORY,ST PETERSBURG 198904,RUSSIA
[2] UNIV MARYLAND,DEPT MATH & STAT,CATONSVILLE,MD 21228
关键词
D O I
10.1007/BF00989280
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper we treat the problem of robust stability of families of time delay system with multiple interval delays and complex weighted diamond coefficients. We provide conditions on the weights under which a simple edge-type stability criterion is available. An application of Kharitonov-Zhabko results, which requires additional restrictions on the delays and leads to a significant reduction of computational burden associated with the stability criteria. In particular, an eight-extreme-point result is derived for diamond quasipolynomials with constant delays.
引用
收藏
页码:397 / 418
页数:22
相关论文
共 50 条
  • [21] Degrees of the stretched Kostka quasi-polynomials
    Gao, Shiliang
    Gao, Yibo
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2024, 56 (05) : 1748 - 1761
  • [22] Quasi-Polynomials of Capelli. II
    Antonov, S. Yu
    Antonova, A., V
    IZVESTIYA SARATOVSKOGO UNIVERSITETA NOVAYA SERIYA-MATEMATIKA MEKHANIKA INFORMATIKA, 2020, 20 (01): : 4 - 16
  • [23] Closed balls for interpolating quasi-polynomials
    Wen, Jiajin
    Cheng, Sui Sun
    COMPUTATIONAL & APPLIED MATHEMATICS, 2011, 30 (03): : 543 - 568
  • [24] Maximal periods of (Ehrhart) quasi-polynomials
    Beck, Matthias
    Sam, Steven V.
    Woods, Kevin M.
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2008, 115 (03) : 517 - 525
  • [25] A computational approach to stability of polytopic families of quasi-polynomials with single delay
    Tuzcu, Ilhan
    INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2010, 20 (17) : 1981 - 1992
  • [26] Characteristic polynomials, Ehrhart quasi-polynomials, and torus groups
    Lawrence, J
    JOURNAL OF NUMBER THEORY, 2006, 117 (02) : 315 - 329
  • [27] Polytopic families of quasi-polynomials:: Vertex-type stability conditions
    Kharitonov, VL
    Torres-Muñoz, JA
    Ortiz-Moctezuma, MB
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-FUNDAMENTAL THEORY AND APPLICATIONS, 2003, 50 (11): : 1413 - 1420
  • [28] Quasi-polynomials of Capelli. III
    Antonov, S. Yu.
    Antonova, A. V.
    IZVESTIYA OF SARATOV UNIVERSITY MATHEMATICS MECHANICS INFORMATICS, 2021, 21 (02): : 142 - 150
  • [29] On the zeros of quasi-polynomials with single delay
    Gumussoy, Suat
    2008 AMERICAN CONTROL CONFERENCE, VOLS 1-12, 2008, : 5282 - 5286
  • [30] An equivalent formulation of chromatic quasi-polynomials
    Tan Nhat Tran
    DISCRETE MATHEMATICS, 2020, 343 (10)