ON THE STABILITY OF QUASI-POLYNOMIALS WITH WEIGHTED DIAMOND COEFFICIENTS

被引:3
|
作者
HOCHERMAN, J
KHARITONOV, VL
KOGAN, J
ZEHEB, E
机构
[1] ST PETERSBURG STATE UNIV,DEPT APPL MATH & CONTROL THEORY,ST PETERSBURG 198904,RUSSIA
[2] UNIV MARYLAND,DEPT MATH & STAT,CATONSVILLE,MD 21228
关键词
D O I
10.1007/BF00989280
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper we treat the problem of robust stability of families of time delay system with multiple interval delays and complex weighted diamond coefficients. We provide conditions on the weights under which a simple edge-type stability criterion is available. An application of Kharitonov-Zhabko results, which requires additional restrictions on the delays and leads to a significant reduction of computational burden associated with the stability criteria. In particular, an eight-extreme-point result is derived for diamond quasipolynomials with constant delays.
引用
收藏
页码:397 / 418
页数:22
相关论文
共 50 条
  • [1] On stability of a weighted diamond of real quasi-polynomials
    Kharitonov, VL
    Atanassova, L
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1997, 42 (06) : 831 - 835
  • [2] Computation of the Highest Coefficients of Weighted Ehrhart Quasi-polynomials of Rational Polyhedra
    V. Baldoni
    N. Berline
    J. A. De Loera
    M. Köppe
    M. Vergne
    Foundations of Computational Mathematics, 2012, 12 : 435 - 469
  • [3] Computation of the Highest Coefficients of Weighted Ehrhart Quasi-polynomials of Rational Polyhedra
    Baldoni, V.
    Berline, N.
    De Loera, J. A.
    Koeppe, M.
    Vergne, M.
    FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2012, 12 (04) : 435 - 469
  • [4] Comparison on the coefficients of characteristic quasi-polynomials of integral arrangements
    Chen, Beifang
    Wang, Suijie
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2012, 119 (01) : 271 - 281
  • [5] UNIFORM APPROXIMATIONS BY QUASI-POLYNOMIALS WITH INTEGRAL-COEFFICIENTS
    MARTIROSYAN, VA
    MATHEMATICAL NOTES, 1980, 27 (1-2) : 116 - 119
  • [6] Quasi-polynomials of Capelli
    Antonov, S. Yu
    Antonova, A., V
    IZVESTIYA SARATOVSKOGO UNIVERSITETA NOVAYA SERIYA-MATEMATIKA MEKHANIKA INFORMATIKA, 2015, 15 (04): : 371 - 382
  • [7] Simple proof of stability criterion for interval quasi-polynomials
    Fang, B.
    IET CONTROL THEORY AND APPLICATIONS, 2011, 5 (17): : 2033 - 2038
  • [8] Hermite quasi-polynomials
    Marikhin, V. G.
    RUSSIAN MATHEMATICAL SURVEYS, 2018, 73 (05) : 931 - 933
  • [9] Robust stability of quasi-polynomials and the finite inclusions theorem
    Mondié, S
    Santos, J
    Kharitonov, VL
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2005, 50 (11) : 1826 - 1831
  • [10] The Distribution of Zeros of Quasi-Polynomials
    Wang, Honghai
    Han, Qing-Long
    IEEE-CAA JOURNAL OF AUTOMATICA SINICA, 2023, 10 (02) : 301 - 304