Covariate-Adjusted Constrained Bayes Predictions of Random Intercepts and Slopes

被引:1
|
作者
Lyles, Robert H. [1 ]
Moore, Renee H. [2 ]
Manatunga, Amita K. [1 ]
Easley, Kirk A. [1 ]
机构
[1] Emory Univ, Rollins Sch Publ Hlth, Dept Biostat, Atlanta, GA 30322 USA
[2] Univ Penn, Sch Med, Dept Biostat & Epidemiol, Philadelphia, PA 19104 USA
关键词
Mixed linear model; prediction; random effects;
D O I
10.22237/jmasm/1241136360
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Constrained Bayes methodology represents an alternative to the posterior mean ( empirical Bayes) method commonly used to produce random effect predictions under mixed linear models. The general constrained Bayes methodology of Ghosh (1992) is compared to a direct implementation of constraints, and it is suggested that the former approach could feasibly be incorporated into commercial mixed model software. Simulation studies and a real-data example illustrate the main points and support the conclusions.
引用
收藏
页码:81 / 94
页数:14
相关论文
共 50 条
  • [31] Subgroup identification using covariate-adjusted interaction trees
    Steingrimsson, Jon Arni
    Yang, Jiabei
    [J]. STATISTICS IN MEDICINE, 2019, 38 (21) : 3974 - 3984
  • [32] L1-Estimation for covariate-adjusted regression
    Sun, Yaodong
    Wang, Dehui
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2020, 2020 (01):
  • [33] An adaptive estimation for covariate-adjusted nonparametric regression model
    Li, Feng
    Lin, Lu
    Lu, Yiqiang
    Feng, Sanying
    [J]. STATISTICAL PAPERS, 2021, 62 (01) : 93 - 115
  • [34] MODELING COVARIATE-ADJUSTED SURVIVAL FOR ECONOMIC EVALUATIONS IN ONCOLOGY
    Majer, I. M.
    Castaigne, J.
    Palmer, S.
    DeCosta, L.
    Campioni, M.
    [J]. VALUE IN HEALTH, 2017, 20 (09) : A408 - A408
  • [35] Sample Size for Confidence Interval of Covariate-Adjusted Mean Difference
    Liu, Xiaofeng Steven
    [J]. JOURNAL OF EDUCATIONAL AND BEHAVIORAL STATISTICS, 2010, 35 (06) : 714 - 725
  • [36] Covariate-adjusted Nonlinear Quantile Regression Fitting for GFR and SCr
    Yang Guangren
    Bai Wanping
    [J]. CONTEMPORARY INNOVATION AND DEVELOPMENT IN STATISTICAL SCIENCE, 2012, : 268 - 273
  • [37] A new family of covariate-adjusted response adaptive designs and their properties
    Zhang Li-Xin
    Hu Fei-fang
    [J]. APPLIED MATHEMATICS-A JOURNAL OF CHINESE UNIVERSITIES SERIES B, 2009, 24 (01) : 1 - 13
  • [38] Covariate-adjusted precision matrix estimation with an application in genetical genomics
    Cai, T. Tony
    Li, Hongzhe
    Liu, Weidong
    Xie, Jichun
    [J]. BIOMETRIKA, 2013, 100 (01) : 139 - 156
  • [39] Covariate-Adjusted Restricted Mean Survival Times and Curves Reply
    Trinquart, Ludovic
    Jacot, Justine
    Conner, Sarah C.
    Porcher, Raphael
    [J]. JOURNAL OF CLINICAL ONCOLOGY, 2017, 35 (04) : 466 - +
  • [40] Lasso-type estimation for covariate-adjusted linear model
    Li, Feng
    Lu, Yiqiang
    [J]. JOURNAL OF APPLIED STATISTICS, 2018, 45 (01) : 26 - 42