DESIGNS FOR LARGE DEGREE POLYNOMIAL REGRESSION

被引:1
|
作者
STUDDEN, WJ
机构
来源
COMMUNICATIONS IN STATISTICS PART A-THEORY AND METHODS | 1978年 / 7卷 / 14期
关键词
D O I
10.1080/03610927808827720
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
引用
收藏
页码:1391 / 1397
页数:7
相关论文
共 50 条
  • [21] ADMISSIBLE AND OPTIMAL EXACT DESIGNS FOR POLYNOMIAL REGRESSION
    CONSTANTINE, KB
    LIM, YB
    STUDDEN, WJ
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 1987, 16 (01) : 15 - 32
  • [22] OPTIMAL AND ADMISSIBLE DESIGNS FOR POLYNOMIAL MONOSPLINE REGRESSION
    BRUVOLD, NT
    ANNALS OF MATHEMATICAL STATISTICS, 1970, 41 (05): : 1786 - &
  • [23] DESIGNS TO MINIMIZE LOSS OF INFORMATION IN POLYNOMIAL REGRESSION
    DYKE, GV
    THE ROYAL STATISTICAL SOCIETY SERIES C-APPLIED STATISTICS, 1974, 23 (03): : 295 - 299
  • [24] Local Polynomial Order in Regression Discontinuity Designs
    Pei, Zhuan
    Lee, David S.
    Card, David
    Weber, Andrea
    JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 2022, 40 (03) : 1259 - 1267
  • [25] D-OTIMAL DESIGNS FOR POLYNOMIAL REGRESSION
    ANTILLE, G
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1977, 285 (08): : 577 - 580
  • [26] Lack-of-fit-efficiently optimal designs to estimate the highest coefficient of a polynomial with large degree
    Bischoff, Wolfgang
    Miller, Frank
    STATISTICS & PROBABILITY LETTERS, 2006, 76 (15) : 1701 - 1704
  • [27] Determination of Polynomial Degree in the Regression of Drug Combinations
    Wang, Boqian
    Ding, Xianting
    Wang, Fei-Yue
    IEEE-CAA JOURNAL OF AUTOMATICA SINICA, 2017, 4 (01) : 41 - 47
  • [28] Determination of Polynomial Degree in the Regression of Drug Combinations
    Boqian Wang
    Xianting Ding
    Fei-Yue Wang
    IEEE/CAAJournalofAutomaticaSinica, 2017, 4 (01) : 41 - 47
  • [29] WEIGHTED POLYNOMIAL REGRESSION DESIGNS WITH MINIMUM AVERAGE VARIANCE
    MALYUTOV, MB
    FEDOROV, VV
    THEORY OF PROBILITY AND ITS APPLICATIONS,USSR, 1971, 16 (04): : 716 - 720
  • [30] A note on optimal designs for estimating the slope of a polynomial regression
    Dette, Holger
    Melas, Viatcheslav B.
    Shpilev, Petr
    STATISTICS & PROBABILITY LETTERS, 2021, 170