A FINITE-DIFFERENCE APPROACH TO DEGENERATE BERNOULLI AND STIRLING POLYNOMIALS

被引:21
|
作者
ADELBERG, A [1 ]
机构
[1] GRINNELL COLL,DEPT MATH & COMP SCI,GRINNELL,IA 50112
关键词
D O I
10.1016/0012-365X(93)E0188-A
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Starting with divided differences of binomial coefficients, a class of multivalued polynomials (three parameters), which includes Bernoulli and Stirling polynomials and various generalizations, is developed. These carry a natural and convenient combinatorial interpretation. Calculation of particular values of the polynomials yields some binomial identities. Properties of the polynomials are established and several factorization results are proven and conjectured.
引用
收藏
页码:1 / 21
页数:21
相关论文
共 50 条
  • [31] Representations of degenerate poly-Bernoulli polynomials
    Kim, Taekyun
    Kim, Dae San
    Kwon, Jongkyum
    Lee, Hyunseok
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2021, 2021 (01)
  • [32] PRACTICAL APPROACH TO FINITE-DIFFERENCE RESISTIVITY MODELING
    MUFTI, IR
    GEOPHYSICS, 1978, 43 (05) : 930 - 942
  • [33] QUANTUM EQUATIONS OF MOTION IN THE FINITE-DIFFERENCE APPROACH
    JANNUSSIS, A
    LETTERE AL NUOVO CIMENTO, 1984, 40 (08): : 250 - 256
  • [34] Some Identities Relating to Degenerate Bernoulli Polynomials
    Kim, Taekyun
    Kim, Dae San
    Kwon, Hyuck-In
    FILOMAT, 2016, 30 (04) : 905 - 912
  • [35] Symmetric Identities on Modified Degenerate Bernoulli Polynomials
    Su, Qi-Peng
    Pan, Hao
    JOURNAL OF INTEGER SEQUENCES, 2024, 27 (05)
  • [36] Degenerate poly-Bernoulli polynomials arising from degenerate polylogarithm
    Kim, Taekyun
    Kim, Dansan
    Kim, Han-Young
    Lee, Hyunseok
    Jang, Lee-Chae
    ADVANCES IN DIFFERENCE EQUATIONS, 2020, 2020 (01)
  • [37] Degenerate poly-Bernoulli polynomials arising from degenerate polylogarithm
    Taekyun Kim
    Dansan Kim
    Han-Young Kim
    Hyunseok Lee
    Lee-Chae Jang
    Advances in Difference Equations, 2020
  • [38] Degenerate Stirling Polynomials of the Second Kind and Some Applications
    Kim, Taekyun
    Kim, Dae San
    Kim, Han Young
    Kwon, Jongkyum
    SYMMETRY-BASEL, 2019, 11 (08):
  • [39] New type degenerate Stirling numbers and Bell polynomials
    Kim, Hye Kyung
    NOTES ON NUMBER THEORY AND DISCRETE MATHEMATICS, 2022, 28 (04) : 666 - 676
  • [40] Probabilistic degenerate Stirling polynomials of the second kind and their applications
    Kim, Taekyun
    Kim, Dae San
    Kwon, Jongkyum
    MATHEMATICAL AND COMPUTER MODELLING OF DYNAMICAL SYSTEMS, 2024, 30 (01) : 16 - 30