A FINITE-DIFFERENCE APPROACH TO DEGENERATE BERNOULLI AND STIRLING POLYNOMIALS

被引:21
|
作者
ADELBERG, A [1 ]
机构
[1] GRINNELL COLL,DEPT MATH & COMP SCI,GRINNELL,IA 50112
关键词
D O I
10.1016/0012-365X(93)E0188-A
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Starting with divided differences of binomial coefficients, a class of multivalued polynomials (three parameters), which includes Bernoulli and Stirling polynomials and various generalizations, is developed. These carry a natural and convenient combinatorial interpretation. Calculation of particular values of the polynomials yields some binomial identities. Properties of the polynomials are established and several factorization results are proven and conjectured.
引用
收藏
页码:1 / 21
页数:21
相关论文
共 50 条
  • [1] CONVOLUTIONS OF GENERALIZED STIRLING NUMBERS AND DEGENERATE BERNOULLI POLYNOMIALS
    Komatsu, Takao
    Young, Paul Thomas
    FIBONACCI QUARTERLY, 2020, 58 (04): : 361 - 366
  • [2] Representing polynomials by degenerate Bernoulli polynomials
    Kim, Dae San
    Kim, Taekyun
    QUAESTIONES MATHEMATICAE, 2023, 46 (05) : 959 - 980
  • [3] A new approach to fully degenerate Bernoulli numbers and polynomials
    Kim, Taekyun
    Kim, Dae San
    FILOMAT, 2023, 37 (07) : 2269 - 2278
  • [4] DEGENERATE BERNOULLI NUMBERS AND POLYNOMIALS ASSOCIATED WITH DEGENERATE HERMITE POLYNOMIALS
    Haroon, Hiba
    Khan, Waseem Ahmad
    COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2018, 33 (02): : 651 - 669
  • [5] Probabilistic degenerate Bernoulli and degenerate Euler polynomials
    Luo, Lingling
    Kim, Taekyun
    Kim, Dae San
    Ma, Yuankui
    MATHEMATICAL AND COMPUTER MODELLING OF DYNAMICAL SYSTEMS, 2024, 30 (01) : 342 - 363
  • [6] FINITE-DIFFERENCE REPRESENTATIONS OF THE DEGENERATE AFFINE HECKE ALGEBRA
    UGLOV, D
    PHYSICS LETTERS A, 1995, 199 (5-6) : 353 - 359
  • [7] A FINITE-DIFFERENCE METHOD FOR DEGENERATE ELLIPTIC-PARABOLIC EQUATIONS
    CANNON, JR
    HILL, CD
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 1968, 5 (02) : 211 - &
  • [8] Fully degenerate Bernoulli numbers and polynomials
    Kim, Taekyun
    Kim, Dae San
    Park, Jin-Woo
    DEMONSTRATIO MATHEMATICA, 2022, 55 (01) : 604 - 614
  • [9] ON DEGENERATE q-BERNOULLI POLYNOMIALS
    Kim, Taekyun
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2016, 53 (04) : 1149 - 1156
  • [10] SYNTHETIC SEISMOGRAMS - FINITE-DIFFERENCE APPROACH
    KELLY, KR
    WARD, RW
    TREITEL, S
    ALFORD, RM
    GEOPHYSICS, 1976, 41 (01) : 2 - 27