MICROWAVE EXCITATION OF A DIFFUSION-COOLED CO2-LASER

被引:12
|
作者
MARZ, M
OESTREICHER, W
机构
[1] Laboratories for High Frequency Technology, University Erlangen-Nuernberg, Eriangen, D-91058
关键词
D O I
10.1088/0022-3727/27/3/007
中图分类号
O59 [应用物理学];
学科分类号
摘要
A microwave-excited (2.45 GHz), diffusion-cooled CO2 laser, capable of operating in a quasi-cw mode, has been developed. By separating the discharge structure from the feeding RF waveguide and using distributed coupling, previous problems with local contracting discharges could be surmounted. For effective diffusion cooling a planar 1.9 mm high discharge channel was used, a structure which easily allows area scaling of laser output power. Two discharge channel designs (metal/glass and all ceramic) were investigated, differing mainly in thermal conductivity and waveguide losses for the 10.6 mum laser radiation. A conventional magnetron for microwave ovens was used as microwave source. System design and extensive measuring results are presented. With a first prototype non-optimized in gas mixture, optical resonator and waveguide surface quality laser output power above 20 W was obtained with an efficiency of about 10%.
引用
收藏
页码:470 / 474
页数:5
相关论文
共 50 条
  • [31] EXCITATION OF VIBRATIONAL-STATES OF ACROLEIN VAPORS BY CO2-LASER
    BLINOV, SI
    ZALESSKAYA, GA
    KOTOV, AA
    DOKLADY AKADEMII NAUK BELARUSI, 1978, 22 (03): : 230 - 233
  • [32] Noise bandwidth of diffusion-cooled hot-electron bolometers
    Schoelkopf, RJ
    Burke, PJ
    Prober, DE
    Karasik, B
    Skalare, A
    McGrath, WR
    Gaidis, MC
    Bumble, B
    LeDuc, HG
    IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 1997, 7 (02) : 3576 - 3579
  • [33] Noise bandwidth of diffusion-cooled hot-electron bolometers
    Schoelkopf, R.J.
    Burke, P.J.
    Prober, D.E.
    Karasik, B.
    Skalare, A.
    McGrath, W.R.
    Gaidis, M.C.
    Bumble, B.
    LeDuc, H.G.
    IEEE Transactions on Applied Superconductivity, 1997, 7 (2 pt 3) : 3576 - 3579
  • [34] Microwave excited periodic-pulse planar CO2-laser
    Mineev, A. P.
    Nefedov, S. M.
    Pashinin, P. P.
    Goncharov, P. A.
    Kiselev, V. V.
    LAT 2010: INTERNATIONAL CONFERENCE ON LASERS, APPLICATIONS, AND TECHNOLOGIES, 2011, 7994
  • [35] A VERSATILE MICROWAVE PLASMA SOURCE AND ITS APPLICATION FOR A CO2-LASER
    MARZ, M
    OESTREICHER, W
    REVIEW OF SCIENTIFIC INSTRUMENTS, 1994, 65 (09): : 2980 - 2983
  • [36] LASER STARK AND LASER MICROWAVE DOUBLE-RESONANCE SPECTROSCOPY OF FLUOROACETYLENE WITH CO2-LASER
    TANAKA, T
    YAMADA, C
    HIROTA, E
    JOURNAL OF MOLECULAR SPECTROSCOPY, 1976, 63 (01) : 142 - 151
  • [37] SIMULTANEOUS CO AND CO2-LASER
    BARRY, JD
    BONEY, WE
    ROLL, WA
    BRANDELIK, JE
    IEEE JOURNAL OF QUANTUM ELECTRONICS, 1973, QE 9 (07) : 779 - 780
  • [38] CO2-LASER RADIATION ATTENUATION BY DIFFUSION EVAPORATING WATER AEROSOL
    GORDIN, MP
    SOKOLOV, AV
    STRELKOV, GM
    RADIOTEKHNIKA I ELEKTRONIKA, 1975, 20 (11): : 2241 - 2249
  • [39] Dynamics of the Working Medium of a Diffusion-Cooled Electric-Discharge CO2 Laser with Periodic Heat Release in the Axial Region of its Cylindrical Resonator
    Azharonok V.V.
    Tukmakov A.L.
    Journal of Engineering Physics and Thermophysics, 2014, 87 (6) : 1469 - 1479
  • [40] EXCITATION OF COLD CAVITY MODES IN A COUPLING-MODULATED CO2-LASER
    SCHOLTZ, AL
    IEEE JOURNAL OF QUANTUM ELECTRONICS, 1975, 11 (09) : 791 - 793