DEPENDENCE OF PERCOLATION THRESHOLDS ON LATTICE CONNECTIVITY

被引:6
|
作者
KURRER, C [1 ]
SCHULTEN, K [1 ]
机构
[1] UNIV ILLINOIS,BECKMAN INST,URBANA,IL 61801
来源
PHYSICAL REVIEW E | 1993年 / 48卷 / 01期
关键词
D O I
10.1103/PhysRevE.48.614
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We investigate site percolation on lattices with directed bonds. Numerical simulations in which the lattice coordination number of the percolation lattices is systematically varied show that the inverse of the percolation threshold depends approximately linearly on the lattice coordination number. We show that this linear relationship is due to a similarity of percolation clusters in lattices for different coordination numbers, We compare this relationship to results obtained by Flory [Principles of Polymer Chemistry (Cornell University Press, Ithaca, New York, 1953), Chap. IX] in the study of gelation processes and discuss its general applicability for related percolation models.
引用
收藏
页码:614 / 617
页数:4
相关论文
共 50 条
  • [21] Predicting percolation thresholds in networks
    Radicchi, Filippo
    PHYSICAL REVIEW E, 2015, 91 (01)
  • [22] Percolation thresholds on elongated lattices
    Marrink, SJ
    Knackstedt, MA
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1999, 32 (44): : L461 - L466
  • [23] Topology invariance in percolation thresholds
    S. Galam
    A. Mauger
    The European Physical Journal B - Condensed Matter and Complex Systems, 1998, 1 : 255 - 258
  • [24] Percolation Thresholds in Polymeric Nanocomposites
    Irzhak, V. I.
    RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A, 2020, 94 (08) : 1643 - 1646
  • [25] Percolation thresholds and universal formulas
    vanderMarck, SC
    PHYSICAL REVIEW E, 1997, 55 (02): : 1514 - 1517
  • [26] Percolation Thresholds in Polymeric Nanocomposites
    V. I. Irzhak
    Russian Journal of Physical Chemistry A, 2020, 94 : 1643 - 1646
  • [27] Universal formulas for percolation thresholds
    Galam, S
    Mauger, A
    PHYSICAL REVIEW E, 1996, 53 (03): : 2177 - 2181
  • [28] Are the tails of percolation thresholds Gaussians?
    de Oliveira, PMC
    Nóbrega, RA
    Stauffer, D
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2004, 37 (12): : 3743 - 3748
  • [29] Sharp thresholds in Bootstrap percolation
    Balogh, J
    Bollobás, B
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2003, 326 (3-4) : 305 - 312
  • [30] Topology invariance in percolation thresholds
    Galam, S
    Mauger, A
    EUROPEAN PHYSICAL JOURNAL B, 1998, 1 (02): : 255 - 258