ERGODIC AVERAGES FOR AXIOM A DIFFEOMORPHISMS

被引:6
|
作者
SIGMUND, K
机构
关键词
D O I
10.1007/BF00538377
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
引用
收藏
页码:319 / &
相关论文
共 50 条
  • [32] Transitive Anosov flows and Axiom-A diffeomorphisms
    Bonatti, Christian
    Guelman, Nancy
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2009, 29 : 817 - 848
  • [33] Fluctuations of the nth return time for Axiom a diffeomorphisms
    Chazottes, JR
    Leplaideur, R
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2005, 13 (02) : 399 - 411
  • [34] AXIOM A DIFFEOMORPHISMS DERIVED FROM ANOSOV FLOWS
    Bonatti, Christian
    Guelman, Nancy
    JOURNAL OF MODERN DYNAMICS, 2010, 4 (01) : 1 - 63
  • [35] SOME ERGODIC PROPERTIES OF COMMUTING DIFFEOMORPHISMS
    HU, HY
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1993, 13 : 73 - 100
  • [36] Ergodic measure-expansive diffeomorphisms
    Sakai, Kazuhiro
    Sumi, Naoya
    Yamamoto, Kenichiro
    DYNAMICAL SYSTEMS-AN INTERNATIONAL JOURNAL, 2014, 29 (04): : 569 - 577
  • [37] Pointwise convergence of multiple ergodic averages and strictly ergodic models
    Wen Huang
    Song Shao
    Xiangdong Ye
    Journal d'Analyse Mathématique, 2019, 139 : 265 - 305
  • [38] POINTWISE CONVERGENCE OF MULTIPLE ERGODIC AVERAGES AND STRICTLY ERGODIC MODELS
    Huang, Wen
    Shao, Song
    Ye, Xiangdong
    JOURNAL D ANALYSE MATHEMATIQUE, 2019, 139 (01): : 265 - 305
  • [39] MULTIPLE ERGODIC AVERAGES FOR FLOWS AND AN APPLICATION
    Potts, Amanda
    ILLINOIS JOURNAL OF MATHEMATICS, 2011, 55 (02) : 589 - 621
  • [40] ON THE ALMOST EVERYWHERE CONVERGENCE OF THE ERGODIC AVERAGES
    MARTINREYES, FJ
    DELATORRE, A
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1990, 10 : 141 - 149