CRYOGENIC INERTIAL CONFINEMENT FUSION TARGET FABRICATION SYSTEM DIRECTLY OPERABLE INSIDE A ROOM-TEMPERATURE TARGET CHAMBER

被引:9
|
作者
KIM, K
RIEGER, H
机构
关键词
D O I
10.1063/1.91930
中图分类号
O59 [应用物理学];
学科分类号
摘要
引用
收藏
页码:425 / 427
页数:3
相关论文
共 36 条
  • [21] Cryogenic Hydrogen Fuel for Controlled Inertial Confinement Fusion (Cryogenic Target Factory Concept Based on FST-Layering Method)
    I. V. Aleksandrova
    E. R. Koresheva
    I. E. Koshelev
    O. N. Krokhin
    A. I. Nikitenko
    I. E. Osipov
    Physics of Atomic Nuclei, 2017, 80 : 1227 - 1248
  • [22] Development of fuel target implosion simulation system in heavy ion inertial confinement fusion
    Uchibori, K.
    Sato, R.
    Karino, T.
    Iinuma, T.
    Kato, H.
    Kawata, S.
    Ogoyski, A., I
    HIGH ENERGY DENSITY PHYSICS, 2020, 34
  • [23] INERTIAL CONFINEMENT FUSION TARGET DESIGN FOR A REACTOR SYSTEM USING LIGHT-IONS
    TAHIR, NA
    LONG, KA
    NUCLEAR FUSION, 1989, 29 (02) : 295 - 304
  • [24] Shadowgraphic Characterization Method of a Cryogenic Hydrogen Isotope Layer in an Indirect-Drive Target for Inertial Confinement Fusion
    Zarubina, E. Yu.
    Rogozhina, M. A.
    PHYSICS OF ATOMIC NUCLEI, 2022, 85 (10) : 1638 - 1641
  • [25] Shadowgraphic Characterization Method of a Cryogenic Hydrogen Isotope Layer in an Indirect-Drive Target for Inertial Confinement Fusion
    E. Yu. Zarubina
    M. A. Rogozhina
    Physics of Atomic Nuclei, 2022, 85 : 1638 - 1641
  • [26] The experimental plan for cryogenic layered target implosions on the National Ignition Facility-The inertial confinement approach to fusion
    Edwards, M. J.
    Lindl, J. D.
    Spears, B. K.
    Weber, S. V.
    Atherton, L. J.
    Bleuel, D. L.
    Bradley, D. K.
    Callahan, D. A.
    Cerjan, C. J.
    Clark, D.
    Collins, G. W.
    Fair, J. E.
    Fortner, R. J.
    Glenzer, S. H.
    Haan, S. W.
    Hammel, B. A.
    Hamza, A. V.
    Hatchett, S. P.
    Izumi, N.
    Jacoby, B.
    Jones, O. S.
    Koch, J. A.
    Kozioziemski, B. J.
    Landen, O. L.
    Lerche, R.
    MacGowan, B. J.
    MacKinnon, A. J.
    Mapoles, E. R.
    Marinak, M. M.
    Moran, M.
    Moses, E. I.
    Munro, D. H.
    Schneider, D. H.
    Sepke, S. M.
    Shaughnessy, D. A.
    Springer, P. T.
    Tommasini, R.
    Bernstein, L.
    Stoeffl, W.
    Betti, R.
    Boehly, T. R.
    Sangster, T. C.
    Glebov, V. Yu.
    McKenty, P. W.
    Regan, S. P.
    Edgell, D. H.
    Knauer, J. P.
    Stoeckl, C.
    Harding, D. R.
    Batha, S.
    PHYSICS OF PLASMAS, 2011, 18 (05)
  • [27] Quantum tunneling of hydrogen atom transfer affects mandrel degradation in inertial confinement fusion target fabrication
    Zhu, Yu
    Yang, Xinrui
    Yu, Famin
    Wang, Rui
    Chen, Qiang
    Zhang, Zhanwen
    Wang, Zhigang
    ISCIENCE, 2022, 25 (01)
  • [28] HEAVY-ION BEAM DRIVEN INERTIAL CONFINEMENT FUSION TARGET STUDIES AND REACTOR CHAMBER NEUTRONIC ANALYSIS
    FROHLICH, R
    GOEL, B
    HENDERSON, DL
    HOBEL, W
    LONG, KA
    TAHIR, NA
    NUCLEAR ENGINEERING AND DESIGN, 1982, 73 (02) : 201 - 222
  • [29] THERMALLY INDUCED BEHAVIOR OF LIQUID-MIXTURES OF HYDROGEN ISOTOPES INSIDE A SPHERICAL INERTIAL CONFINEMENT FUSION TARGET
    VARADARAJAN, V
    KIM, K
    BERNAT, TP
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A-VACUUM SURFACES AND FILMS, 1987, 5 (04): : 2750 - 2754
  • [30] AN ANALYSIS OF THE THERMALLY INDUCED FORMATION OF A UNIFORM LIQUID LAYER OF TERNARY DEUTERIUM TRITIUM MIXTURE INSIDE A CRYOGENIC SPHERICAL-SHELL INERTIAL CONFINEMENT FUSION TARGET
    VARADARAJAN, V
    KIM, K
    BERNAT, TP
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A, 1988, 6 (03): : 1876 - 1881