TENSOR PRODUCT OF DIFFERENCE POSETS AND EFFECT ALGEBRAS

被引:12
|
作者
DVURECENSKIJ, A
机构
[1] Mathematical Institute, Slovak Academy of Sciences, Bratislava
关键词
D O I
10.1007/BF00676246
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A tenser product of difference posets and/or, equivalently, of effect algebras, which generalize orthoalgebras and orthomodular posers, is defined, and an equivalent condition is presented. The proof uses the notion of D-test spaces generalizing test spaces of Randall and Foulis. in particular, we show that a tenser product for difference posers with a nonempty system of probability measures exists.
引用
收藏
页码:1337 / 1348
页数:12
相关论文
共 50 条
  • [21] On algebras obtained by tensor product
    Remm, Elisabeth
    Goze, Michel
    JOURNAL OF ALGEBRA, 2011, 327 (01) : 13 - 30
  • [22] Derivations of tensor product algebras
    Azam, Saeid
    COMMUNICATIONS IN ALGEBRA, 2008, 36 (03) : 905 - 927
  • [23] TENSOR PRODUCT OF STANDARD ALGEBRAS
    VAROPOULOS, NT
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1973, 276 (18): : 1193 - 1195
  • [24] Tensor Product of Evolution Algebras
    Yolanda Cabrera Casado
    Dolores Martín Barquero
    Cándido Martín González
    Alicia Tocino
    Mediterranean Journal of Mathematics, 2023, 20
  • [25] Tensor Product of Incidence Algebras and Group Algebras
    Dudin, Ilya V.
    Krylov, Piotr A.
    VESTNIK TOMSKOGO GOSUDARSTVENNOGO UNIVERSITETA-MATEMATIKA I MEKHANIKA-TOMSK STATE UNIVERSITY JOURNAL OF MATHEMATICS AND MECHANICS, 2023, (84): : 5 - 13
  • [26] TENSOR PRODUCT OF SEMISIMPLE ALGEBRAS
    COLEMAN, DB
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1969, 16 (01): : 103 - &
  • [27] Pseudo effect algebras are algebras over bounded posets
    Jenca, Gejza
    FUZZY SETS AND SYSTEMS, 2020, 397 : 179 - 185
  • [28] Decoupling of tensor factors in cross product and braided tensor product algebras
    Fiore, G
    GROUP 24 : PHYSICAL AND MATHEMATICAL ASPECTS OF SYMMETRIES, 2003, 173 : 807 - 810
  • [29] Tensor product of difference sets
    Hu, Jianhua
    Yu, Zhijian
    Xie, Suzhen
    CZECHOSLOVAK JOURNAL OF PHYSICS, 2006, 56 (10-11) : 1185 - 1189
  • [30] Tensor homological minimal algebras, global dimension of the tensor product of algebras and of generalized Weyl algebras
    Bavula, V
    BULLETIN DES SCIENCES MATHEMATIQUES, 1996, 120 (03): : 293 - 335