ON APPROXIMATION BY BIVARIATE INCOMPLETE POLYNOMIALS

被引:0
|
作者
KROO, A
机构
[1] Mathematical Institute of the, Hungarian Academy of Sciences, Budapest, H-1053
关键词
MUNTZ POLYNOMIALS; INCOMPLETE POLYNOMIALS; BERNSTEIN POLYNOMIALS;
D O I
10.1007/BF01263064
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we prove that given certain convex domains DELTA on the plane, epsilon > 0, and f is-an-element-of C(DELTA) such that f = 0 on theta2DELTA = {(theta2x, theta2y): (x, y) is-an-element-of DELTA} (0 < theta < 1), a polynomial p(x, y) of the form [GRAPHICS] exists such that \\f - p\\C(DELTA) less-than-or-equal-to epsilon. The admissible convex domains include triangles and parallelograms with a vertex at the origin and sections of unit disk.
引用
收藏
页码:197 / 206
页数:10
相关论文
共 50 条
  • [41] ON LACUNARY INCOMPLETE POLYNOMIALS
    SAFF, EB
    VARGA, RS
    MATHEMATISCHE ZEITSCHRIFT, 1981, 177 (03) : 297 - 314
  • [42] Approximation of bivariate copulas by patched bivariate Frechet copulas
    Zheng, Yanting
    Yang, Jingping
    Huang, Jianhua Z.
    INSURANCE MATHEMATICS & ECONOMICS, 2011, 48 (02): : 246 - 256
  • [43] Bivariate orthogonal polynomials on triangular domains
    Rababah, Abedallah
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2008, 78 (01) : 107 - 111
  • [44] Bivariate Chromatic Polynomials of Mixed Graphs
    Beck M.
    Kolhatkar S.
    Discrete Mathematics and Theoretical Computer Science, 2023, 252
  • [45] On Generating Discrete Orthogonal Bivariate Polynomials
    Marko Huhtanen
    Rasmus Munk Larsen
    BIT Numerical Mathematics, 2002, 42 : 393 - 407
  • [46] Counting reducible and singular bivariate polynomials
    von zur Gathen, Joachim
    FINITE FIELDS AND THEIR APPLICATIONS, 2008, 14 (04) : 944 - 978
  • [47] Factoring bivariate polynomials using adjoints
    Weimann, Martin
    JOURNAL OF SYMBOLIC COMPUTATION, 2013, 58 : 77 - 98
  • [48] Quadratic Decomposition of Bivariate Orthogonal Polynomials
    Amílcar Branquinho
    Ana Foulquié-Moreno
    Teresa E. Pérez
    Mediterranean Journal of Mathematics, 2023, 20
  • [49] Some factorization results for bivariate polynomials
    Bonciocat, Nicolae Ciprian
    Garg, Rishu
    Singh, Jitender
    COMMUNICATIONS IN ALGEBRA, 2025, 53 (01) : 328 - 341
  • [50] Factoring bivariate sparse (lacunary) polynomials
    Avendano, Martin
    Krick, Teresa
    Sombra, Martin
    JOURNAL OF COMPLEXITY, 2007, 23 (02) : 193 - 216