ON APPROXIMATION BY BIVARIATE INCOMPLETE POLYNOMIALS

被引:0
|
作者
KROO, A
机构
[1] Mathematical Institute of the, Hungarian Academy of Sciences, Budapest, H-1053
关键词
MUNTZ POLYNOMIALS; INCOMPLETE POLYNOMIALS; BERNSTEIN POLYNOMIALS;
D O I
10.1007/BF01263064
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we prove that given certain convex domains DELTA on the plane, epsilon > 0, and f is-an-element-of C(DELTA) such that f = 0 on theta2DELTA = {(theta2x, theta2y): (x, y) is-an-element-of DELTA} (0 < theta < 1), a polynomial p(x, y) of the form [GRAPHICS] exists such that \\f - p\\C(DELTA) less-than-or-equal-to epsilon. The admissible convex domains include triangles and parallelograms with a vertex at the origin and sections of unit disk.
引用
收藏
页码:197 / 206
页数:10
相关论文
共 50 条
  • [1] APPROXIMATION BY INCOMPLETE POLYNOMIALS
    GOLITSCHEK, MV
    JOURNAL OF APPROXIMATION THEORY, 1980, 28 (02) : 155 - 160
  • [2] APPROXIMATION OF XN BY INCOMPLETE POLYNOMIALS
    BOROSH, I
    CHUI, CK
    SMITH, PW
    JOURNAL OF APPROXIMATION THEORY, 1978, 24 (03) : 227 - 235
  • [3] INCOMPLETE POLYNOMIALS OF BEST APPROXIMATION
    LORENTZ, GG
    ISRAEL JOURNAL OF MATHEMATICS, 1978, 29 (2-3) : 132 - 140
  • [4] Incomplete Bivariate Fibonacci and Lucas p-Polynomials
    Tasci, Dursun
    Firengiz, Mirac Cetin
    Tuglu, Naim
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2012, 2012
  • [5] BIVARIATE ABSTRACT FRACTIONAL MONOTONE CONSTRAINED APPROXIMATION BY POLYNOMIALS
    Anastassiou, G. A.
    ACTA MATHEMATICA UNIVERSITATIS COMENIANAE, 2022, 91 (03): : 205 - 223
  • [6] AN ALGORITHM FOR SIMULTANEOUS MAGNITUDE AND PHASE APPROXIMATION OF BIVARIATE RATIONAL POLYNOMIALS
    CORTELAZZO, G
    DESIMONE, C
    MIAN, GA
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1991, 34 (02) : 145 - 160
  • [7] Rational approximation of offset surfaces based on bivariate Legendre polynomials
    Zhang, Li
    Tan, Jieqing
    Liu, Zhi
    Journal of Information and Computational Science, 2010, 7 (03): : 619 - 624
  • [8] Partial shape preserving approximation by bivariate Hermite-Fejer polynomials
    Anastassiou, GA
    Gal, SG
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2001, 42 (1-2) : 57 - 64
  • [9] The Exact Order of Approximation for Bivariate Complex Bernstein-Schurer Polynomials
    Ispir, Nurhayat
    Gungor, Sule Yuksel
    EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2016, 9 (03): : 322 - 332
  • [10] Rational and polynomial approximation of offset surfaces using bivariate newton polynomials
    Zhang, Li
    Tan, Jieqing
    Liu, Zhi
    Journal of Computational Information Systems, 2009, 5 (05): : 1523 - 1528