MATRIX DESCRIPTION OF 2D DIFFRACTION GRATINGS

被引:0
|
作者
BEKSHAEV, AY
机构
来源
OPTIKA I SPEKTROSKOPIYA | 1989年 / 67卷 / 02期
关键词
D O I
暂无
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
引用
收藏
页码:428 / 432
页数:5
相关论文
共 50 条
  • [31] Justification of matrix truncation in the modal methods of diffraction gratings
    Li, LF
    JOURNAL OF OPTICS A-PURE AND APPLIED OPTICS, 1999, 1 (04): : 531 - 536
  • [32] Primitivity of positive matrix pairs: Algebraic characterization, graph theoretic description, and 2D systems interpretation
    Fornasini, E
    Valcher, ME
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1998, 19 (01) : 71 - 88
  • [33] Technological problems in forming Si waveguide lamellar diffraction gratings and 2D photonic crystals by plasma and wet etching of Si
    Il'in, Aleksandr I.
    Volkov, Vladimir T.
    Trofimov, Oleg V.
    Barabanenkov, Mikhail Yu.
    2015 IEEE 15TH INTERNATIONAL CONFERENCE ON NANOTECHNOLOGY (IEEE-NANO), 2015, : 983 - 986
  • [34] Photo- and electro-controllable 2D diffraction gratings prepared using electrohydrodynamic instability in a nematic polymerizable mixture
    Bobrovsky, Alexey
    Shibaev, Valery
    Ostrovskii, Boris
    Cigl, Martin
    Hamplova, Vera
    Bubnov, Alexej
    JOURNAL OF MATERIALS CHEMISTRY C, 2023, 11 (33) : 11379 - 11391
  • [35] Processing of 2D Images Using the Bragg Diffraction
    V. M. Kotov
    Journal of Communications Technology and Electronics, 2020, 65 : 1331 - 1335
  • [36] Theory of diffraction for 2D photonic crystals with a boundary
    Felbacq, D
    Centeno, E
    OPTICS COMMUNICATIONS, 2001, 199 (1-4) : 39 - 45
  • [37] Imaging and diffraction characterisation of 2D inorganic nanostructures
    Shmeliov, A.
    Shannon, M.
    Wang, P.
    E, H.
    Nellist, P. D.
    Nicolosil, V.
    ELECTRON MICROSCOPY AND ANALYSIS GROUP CONFERENCE 2011 (EMAG 2011), 2012, 371
  • [38] Matrix conditions for the stability of 2D dynamics
    Ooba, T
    CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2000, 19 (03) : 187 - 196
  • [39] Matrix models and 2D string theory
    Martinec, EJ
    APPLICATIONS OF RANDOM MATRICES IN PHYSICS, 2006, 221 : 403 - 457
  • [40] Matrix conditions for the stability of 2D dynamics
    Tatsushi Ooba
    Circuits, Systems and Signal Processing, 2000, 19 : 187 - 196