RESIDUAL STRESS PREDICTION IN POROUS CFRP USING ARTIFICIAL NEURAL NETWORKS

被引:7
|
作者
Gomes, Guilherme Ferreira [1 ]
Ancelotti, Antonio Carlos, Jr. [1 ]
da Cunha, Sebastiao Simoes, Jr. [1 ]
机构
[1] Fed Univ Itajuba UNIFEI, Mech Engn Inst, Av BPS 1303, Itajuba, Brazil
来源
关键词
artificial neural networks; porous carbon fiber; fatigue test; residual stress;
D O I
10.1615/CompMechComputApplIntJ.v9.i1.30
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
The use of composite materials, especially the ones made of carbon fiber/epoxy, has considerably increased for structural applications in the aerospace industry. One of the most common defects related to composite processing refers to void formation or porosity. In general, porosity causes reduction of the mechanical properties of composites and therefore it is important to evaluate the behavior of this material in the presence of this type of defect. The porosity level was taken as the input of the network. Four fatigue test data groups were used in this work, three for the training state and one set of data for validation. The ultimate strength prediction was performed with an artificial neural network backpropagation algorithm. The neural network results showed that the application of the Levenberg-Marquardt learning algorithm leads to a high predictive ultimate strength quality.
引用
收藏
页码:27 / 40
页数:14
相关论文
共 50 条
  • [41] Ozone Concentration Prediction using Artificial Neural Networks
    Gavrila, Camelia
    REVISTA DE CHIMIE, 2017, 68 (10): : 2224 - 2227
  • [42] Horse Racing Prediction Using Artificial Neural Networks
    Davoodi, Elnaz
    Khanteymoori, Ali Reza
    RECENT ADVANCES IN NEURAL NETWORKS, FUZZY SYSTEMS & EVOLUTIONARY COMPUTING, 2010, : 155 - 160
  • [43] GPS Orbital Prediction Using Artificial Neural Networks
    Yousif, Hamad
    El-Rabbany, Ahmed
    PROCEEDINGS OF THE 2008 NATIONAL TECHNICAL MEETING OF THE INSTITUTE OF NAVIGATION - NTM 2008, 2008, : 773 - 780
  • [44] Prediction of Solar Radiation Using Artificial Neural Networks
    Faceira, Joao
    Afonso, Paulo
    Salgado, Paulo
    CONTROLO'2014 - PROCEEDINGS OF THE 11TH PORTUGUESE CONFERENCE ON AUTOMATIC CONTROL, 2015, 321 : 397 - 406
  • [45] Prediction of hydrocyclone performance using artificial neural networks
    Karimi, M.
    Dehghani, A.
    Nezamalhosseini, A.
    Talebi, S.H.
    Journal of the Southern African Institute of Mining and Metallurgy, 2010, 110 (05) : 207 - 212
  • [46] Using artificial neural networks in prediction, runoff and sediment
    Sichani, SA
    Tudeshki, ARS
    WATER-SAVING AGRICULTURE AND SUSTAINABLE USE OF WATER AND LAND RESOURCES, VOLS 1 AND 2, PROCEEDINGS, 2004, : 821 - 832
  • [47] On Prediction of Friction Coefficient Using Artificial Neural Networks
    Deiab, Ibrahim M.
    Shammari, Awadh T. A.
    2009 6TH INTERNATIONAL SYMPOSIUM ON MECHATRONICS AND ITS APPLICATIONS (ISMA), 2009, : 1 - +
  • [48] Dewpoint temperature prediction using artificial neural networks
    Shank, D. B.
    Hoogenboom, G.
    McClendon, R. W.
    JOURNAL OF APPLIED METEOROLOGY AND CLIMATOLOGY, 2008, 47 (06) : 1757 - 1769
  • [49] Prediction of properties of rubber by using artificial neural networks
    Vijayabaskar, V.
    Gupta, Rakesh
    Chakrabarti, P.P.
    Bhowmick, Anil K.
    Journal of Applied Polymer Science, 2006, 100 (03): : 2227 - 2237
  • [50] Prediction of corneal permeability using artificial neural networks
    Agatonovic-Kustrin, S
    Evans, A
    Alany, RG
    PHARMAZIE, 2003, 58 (10): : 725 - 729