DISCONJUGACY AND OSCILLATION OF THIRD-ORDER DIFFERENTIAL EQUATIONS WITH NONNEGATIVE COEFFICIENTS

被引:3
|
作者
ETGEN, GJ [1 ]
SHIH, CD [1 ]
机构
[1] UNIV HOUSTON,DEPT MATH,HOUSTON,TX 77004
关键词
D O I
10.2307/2038953
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
引用
收藏
页码:577 / 582
页数:6
相关论文
共 50 条
  • [21] Oscillation criteria for third-order nonlinear differential equations
    Baculikova, B.
    Elabbasy, E. M.
    Saker, S. H.
    Dzurina, J.
    [J]. MATHEMATICA SLOVACA, 2008, 58 (02) : 201 - 220
  • [22] Oscillation criteria for third-order delay differential equations
    Chatzarakis, George E.
    Grace, Said R.
    Jadlovska, Irena
    [J]. ADVANCES IN DIFFERENCE EQUATIONS, 2017,
  • [23] Oscillation criteria for third-order delay differential equations
    George E Chatzarakis
    Said R Grace
    Irena Jadlovská
    [J]. Advances in Difference Equations, 2017
  • [24] On oscillation of third-order noncanonical delay differential equations
    Grace, Said R.
    Jadlovska, Irena
    Zafer, Agacik
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2019, 362
  • [25] Oscillation of Third-Order Differential Equations with Mixed Arguments
    Dzurina, Jozef
    Baculikova, Blanka
    [J]. DIFFERENTIAL AND DIFFERENCE EQUATIONS WITH APPLICATI ONS, 2013, 47 : 375 - 385
  • [26] DISCONJUGACY AND EXTREMAL SOLUTIONS OF NONLINEAR THIRD-ORDER EQUATIONS
    Ma, Ruyun
    Lu, Yanqiong
    [J]. COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2014, 13 (03) : 1223 - 1236
  • [27] Oscillation Criteria for Third-Order Emden-Fowler Differential Equations with Unbounded Neutral Coefficients
    Chatzarakis, George E.
    Grace, Said R.
    Jadlovska, Irena
    Li, Tongxing
    Tunc, Ercan
    [J]. COMPLEXITY, 2019, 2019
  • [28] Oscillation criteria for third-order semi-canonical differential equations with unbounded neutral coefficients
    Saranya, Karunamurthy
    Piramanantham, Veeraraghavan
    Thandapani, Ethiraju
    Tunc, Ercan
    [J]. STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2024, 69 (01): : 115 - 125
  • [29] Oscillation theory of third-order nonlinear functional differential equations
    Graef, John R.
    Saker, Samir H.
    [J]. HIROSHIMA MATHEMATICAL JOURNAL, 2013, 43 (01) : 49 - 72
  • [30] OSCILLATION CRITERIA FOR THIRD-ORDER FUNCTIONAL DIFFERENTIAL EQUATIONS WITH DAMPING
    Bohner, Martin
    Grace, Said R.
    Jadlovska, Irena
    [J]. ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, : 16 - 30