A cubic equation of state based on a simplified hard-core model

被引:26
|
作者
Mohsen-Nia, M
Moddaress, H
Mansoori, GA
机构
[1] Univ Illinois, Dept Chem Engn, Chicago, IL 60607 USA
[2] Amirkabir Univ Technol, Dept Chem Engn, Tehran, Iran
基金
美国国家科学基金会;
关键词
cubic equation of state; hard-sphere mixture; phase equilibria prediction; solubility prediction; density prediction;
D O I
10.1080/00986449508936281
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
The Redlich-Kwong (RK) equation of state introduced in 1949 has been considered. the most accurate two-constant-parameter cubic equation of state. The other cubic equations which are mo re accurate than the RK equation contain either three, or more, parameters and/or their parameters are temperature-dependent. A New two-constant-parameter cubic equation of state, Z(m) = (v + 0.62b(m))/(v - 0.47b(m)) - (Sigma Sigmax(i)x(j)a(ij))v/RT)/[T(1/2)v(v + 0.47 Sigmax(i)b(i))]; b(m) = (1/4)(3 Sigma (i)Sigma (j)x(i)x(j)b(ij) + Sigma (i)x(i)b(ii)); b(ij) = (b(ii)(1/3) + b(jj)(1/3))(3)/2; a(ij) = (1 - k(jj))(a(ii)a(jj))(1/2), a(ii) 1.46243RT(cii)(3/2) V-cii; b(ii) = 0.41274V(cii) is introduced using a simplified molecular theory of hard-sphere fluids for its repulsive term. This two-constant-parameter cubic equation of state appreciably increases the accuracy of thermodynamic property predictions and phase equilibria of pure fluids and fluid mixtures over the equations of this category.
引用
收藏
页码:15 / 31
页数:17
相关论文
共 50 条
  • [21] EQUATIONS OF STATE FOR CLASSICAL HARD-CORE SYSTEMS
    ALEXANIAN, M
    PHYSICAL REVIEW B, 1985, 31 (11): : 7160 - 7165
  • [22] PERTURBED HARD-CORE EQUATIONS OF STATE FOR FLUIDS
    PALANCO, JMG
    RUBIO, RG
    PENA, MD
    PROLONGO, MG
    MATERIALS CHEMISTRY AND PHYSICS, 1987, 18 (04) : 325 - 342
  • [23] Solving Schrodinger equation for bipartite hard-core potential by virtue of the entangled state representation
    Yu, Hai-jun
    Fan, Hong-Yi
    CANADIAN JOURNAL OF PHYSICS, 2019, 97 (01) : 82 - 85
  • [24] Equation of state and critical point behavior of hard-core double-Yukawa fluids
    Montes, J.
    Robles, M.
    Lopez de Haro, M.
    JOURNAL OF CHEMICAL PHYSICS, 2016, 144 (08):
  • [25] POISSON LIMITS FOR A HARD-CORE CLUSTERING MODEL
    SAUNDERS, R
    KRYSCIO, RJ
    FUNK, GM
    ADVANCES IN APPLIED PROBABILITY, 1980, 12 (02) : 294 - 294
  • [26] TREATMENT OF HARD-CORE IN SHELL MODEL CALCULATIONS
    BANERJEE, B
    PARIKH, JC
    RAO, YST
    NUCLEAR PHYSICS A, 1967, A 94 (03) : 481 - &
  • [27] Odd cutsets and the hard-core model on Zd
    Peled, Ron
    Samotij, Wojciech
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2014, 50 (03): : 975 - 998
  • [28] On phase transition in the hard-core model on Zd
    Galvin, D
    Kahn, J
    COMBINATORICS PROBABILITY & COMPUTING, 2004, 13 (02): : 137 - 164
  • [29] The hard-core model on random graphs revisited
    Barbier, Jean
    Krzakala, Florent
    Zdeborova, Lenka
    Zhang, Pan
    ELC INTERNATIONAL MEETING ON INFERENCE, COMPUTATION, AND SPIN GLASSES (ICSG2013), 2013, 473
  • [30] Simplified exponential approximation for thermodynamics of a hard-core repulsive Yukawa fluid
    Hlushak, S.
    Trokhymchuk, A.
    CONDENSED MATTER PHYSICS, 2012, 15 (02)