LATITUDINAL GRADIENT OF ATMOSPHERIC CO2 DUE TO SEASONAL EXCHANGE WITH LAND BIOTA

被引:312
|
作者
DENNING, AS
FUNG, IY
RANDALL, D
机构
[1] NASA, GODDARD SPACE FLIGHT CTR, INST SPACE STUDIES, NEW YORK, NY 10025 USA
[2] UNIV VICTORIA, SCH EARTH & OCEAN SCI, VICTORIA, BC V8W 2Y2, CANADA
关键词
D O I
10.1038/376240a0
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
THE concentration of carbon dioxide in the atmosphere is increasing, largely because of fossil-fuel combustion, but the rate of increase is only about half of the total emission rate(1). The balance of the carbon must be taken up in the oceans and the terrestrial biosphere, but the relative importance of each of these sinks-as well as their geographical distribution and the uptake mechanisms involved-are still a matter of debate(1-4). Measurements of CO2 concentrations at remote marine sites(5-9) have been used with numerical models of atmospheric transport to deduce the location, nature and magnitude of these carbon sinks(2,10-19). One of the most important constraints on such estimates is the observed interhemispheric gradient in atmospheric CO2 concentration. Published models that simulate the transport of trace gases suggest that the gradient is primarily due to interhemispheric differences in fossil-fuel emissions, with small contributions arising from natural exchange of CO2 with the various carbon reservoirs. Here we use a full atmospheric general circulation model with a more realistic representation of turbulent mixing near the ground to investigate CO2 transport. We find that the latitudinal (meridional) gradient imposed by the seasonal terrestrial biota is nearly half as strong as that imposed by fossil-fuel emissions. Such a contribution implies that the sinks of atmospheric CO2 in the Northern Hemisphere must be stronger than previously suggested.
引用
收藏
页码:240 / 243
页数:4
相关论文
共 50 条
  • [31] Trend,seasonal and diurnal variations of atmospheric CO2 in Beijing
    WANG Yuesi
    Department of Chemistry
    ChineseScienceBulletin, 2002, (24) : 2050 - 2055
  • [32] Seasonal binding of atmospheric CO2 by oil shale ash
    Uibu, M.
    Kuusik, R.
    Veskimaee, H.
    OIL SHALE, 2008, 25 (02) : 254 - 266
  • [33] Trend, seasonal and diurnal variations of atmospheric CO2 in Beijing
    Wang, YS
    Wang, CK
    Guo, XQ
    Liu, GR
    Huang, Y
    CHINESE SCIENCE BULLETIN, 2002, 47 (24): : 2050 - 2055
  • [34] Contribution of disturbance to increasing seasonal amplitude of atmospheric CO2
    Zimov, SA
    Davidov, SP
    Zimova, GM
    Davidova, AI
    Chapin, FS
    Chapin, MC
    Reynolds, JF
    SCIENCE, 1999, 284 (5422) : 1973 - 1976
  • [35] Inter-annual variability in the interhemispheric atmospheric CO2 gradient:: contributions from transport and the seasonal rectifier
    Dargaville, RJ
    Doney, SC
    Fung, IY
    TELLUS SERIES B-CHEMICAL AND PHYSICAL METEOROLOGY, 2003, 55 (02): : 711 - 722
  • [36] An estimate of monthly global emissions of anthropogenic CO2:: Impact on the seasonal cycle of atmospheric CO2
    Erickson, D. J., III
    Mills, R. T.
    Gregg, J.
    Blasing, T. J.
    Hoffman, F. M.
    Andres, R. J.
    Devries, M.
    Zhu, Z.
    Kawa, S. R.
    JOURNAL OF GEOPHYSICAL RESEARCH-BIOGEOSCIENCES, 2008, 113 (G1)
  • [37] Modelling the impact of biota and increasing atmospheric CO2 on silicate mineral weathering processes
    Banwart, Steven A.
    Taylor, L. L.
    Leake, J. R.
    Beerling, D. J.
    GEOCHIMICA ET COSMOCHIMICA ACTA, 2009, 73 (13) : A84 - A84
  • [38] Atmospheric deposition, CO2, and change in the land carbon sink
    Fernandez-Martinez, M.
    Vicca, S.
    Janssens, I. A.
    Ciais, P.
    Obersteiner, M.
    Bartrons, M.
    Sardans, J.
    Verger, A.
    Canadell, J. G.
    Chevallier, F.
    Wang, X.
    Bernhofer, C.
    Curtis, P. S.
    Gianelle, D.
    Gruewald, T.
    Heinesch, B.
    Ibrom, A.
    Knohl, A.
    Laurila, T.
    Law, B. E.
    Limousin, J. M.
    Longdoz, B.
    Loustau, D.
    Mammarella, I.
    Matteucci, G.
    Monson, R. K.
    Montagnani, L.
    Moors, E. J.
    Munger, J. W.
    Papale, D.
    Piao, S. L.
    Penuelas, J.
    SCIENTIFIC REPORTS, 2017, 7
  • [39] Atmospheric deposition, CO2, and change in the land carbon sink
    M. Fernández-Martínez
    S. Vicca
    I. A. Janssens
    P. Ciais
    M. Obersteiner
    M. Bartrons
    J. Sardans
    A. Verger
    J. G. Canadell
    F. Chevallier
    X. Wang
    C. Bernhofer
    P. S. Curtis
    D. Gianelle
    T. Grünwald
    B. Heinesch
    A. Ibrom
    A. Knohl
    T. Laurila
    B. E. Law
    J. M. Limousin
    B. Longdoz
    D. Loustau
    I. Mammarella
    G. Matteucci
    R. K. Monson
    L. Montagnani
    E. J. Moors
    J. W. Munger
    D. Papale
    S. L. Piao
    J. Peñuelas
    Scientific Reports, 7
  • [40] Diel and seasonal patterns of tropical forest CO2 exchange
    Goulden, ML
    Miller, SD
    da Rocha, HR
    Menton, MC
    de Freitas, HC
    Figueira, AMES
    de Sousa, CAD
    ECOLOGICAL APPLICATIONS, 2004, 14 (04) : S42 - S54