Further results on super graceful labeling of graphs

被引:2
|
作者
Lau, Gee-Choon [1 ]
Shiu, Wai Chee [2 ]
Ng, Ho-Kuen [3 ]
机构
[1] Univ Teknol MARA, Fac Comp & Math Sci, Shah Alam 40450, Selangor, Malaysia
[2] Hong Kong Baptist Univ, Dept Math, 224 Waterloo Rd, Kowloon Tong, Hong Kong, Peoples R China
[3] San Jose State Univ, Dept Math, San Jose, CA 95192 USA
关键词
Graceful labeling; Super graceful labeling; Tree;
D O I
10.1016/j.akcej.2016.06.002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G = (V(G), E(G)) be a simple, finite and undirected graph of order p and size q. A bijection f : V(G). E(G) -> {k, k + 1, k + 2, ... , k + p + q - 1} such that f (uv) = vertical bar f(u) - f(v)vertical bar for every edge uv is an element of E(G) is said to be a k-super graceful labeling of G. We say G is k-super graceful if it admits a k-super graceful labeling. For k = 1, the function f is called a super graceful labeling and a graph is super graceful if it admits a super graceful labeling. In this paper, we study the super gracefulness of complete graph, the disjoint union of certain star graphs, the complete tripartite graphs K(1, 1, n), and certain families of trees. We also present four methods of constructing new super graceful graphs. In particular, all trees of order at most 7 are super graceful. We conjecture that all trees are super graceful. (C) 2016 Kalasalingam University. Publishing Services by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
引用
收藏
页码:200 / 209
页数:10
相关论文
共 50 条
  • [31] ODD GRACEFUL LABELING OF ARBITRARY SUPERSUBDIVISION OF CERTAIN GRAPHS
    Velankanni, A.
    Raj, A. Bernick
    Sujasree, M.
    ADVANCES AND APPLICATIONS IN DISCRETE MATHEMATICS, 2022, 34 : 23 - 37
  • [32] ODD GRACEFUL LABELING OF SSG WITH STAR RELATED GRAPHS
    Jesintha, J. Jeba
    Devakirubanithi, D.
    Aarthy, B.
    ADVANCES AND APPLICATIONS IN MATHEMATICAL SCIENCES, 2021, 21 (02): : 519 - 529
  • [33] Edge Even Graceful Labeling of Polar Grid Graphs
    Daoud, Salama Nagy
    SYMMETRY-BASEL, 2019, 11 (01):
  • [34] Further results on super (a, d)-EAT labeling of subdivided stars
    Bhatti, A. A.
    Zahra, Q.
    Javaid, M.
    UTILITAS MATHEMATICA, 2015, 98 : 113 - 126
  • [35] Super–edge–graceful Labelings of Some Cubic Graphs
    Wai Chee Shiu
    Acta Mathematica Sinica, 2006, 22 : 1621 - 1628
  • [36] Further results on super edge magic deficiency of unicyclic graphs
    Ahmad, Ali
    Javaid, Imran
    Nadeem, M. F.
    ARS COMBINATORIA, 2011, 99 : 129 - 138
  • [37] FURTHER RESULTS ON SUPER EDGE-MAGIC DEFICIENCY OF GRAPHS
    Hegde, S. M.
    Shetty, Sudhakar
    Shankaran, P.
    ARS COMBINATORIA, 2011, 99 : 487 - 502
  • [38] SUPER MEAN LABELING OF GRAPHS
    Ramya, D.
    Ponraj, R.
    Jeyanthi, P.
    ARS COMBINATORIA, 2013, 112 : 65 - 72
  • [39] VERTEX AND EDGE-VERTEX GRACEFUL LABELING ON NEUTROSOPHIC GRAPHS
    Vetrivel, G.
    Mullai, M.
    TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2025, 15 (02): : 387 - 399
  • [40] 1 MODULO 3 GRACEFUL LABELING IN CERTAIN CLASSES OF GRAPHS
    Vijayakumar, P.
    Thulukkanam, K.
    Thirusangu, K.
    ADVANCES AND APPLICATIONS IN MATHEMATICAL SCIENCES, 2021, 20 (09): : 1655 - 1667