Further results on super graceful labeling of graphs

被引:2
|
作者
Lau, Gee-Choon [1 ]
Shiu, Wai Chee [2 ]
Ng, Ho-Kuen [3 ]
机构
[1] Univ Teknol MARA, Fac Comp & Math Sci, Shah Alam 40450, Selangor, Malaysia
[2] Hong Kong Baptist Univ, Dept Math, 224 Waterloo Rd, Kowloon Tong, Hong Kong, Peoples R China
[3] San Jose State Univ, Dept Math, San Jose, CA 95192 USA
关键词
Graceful labeling; Super graceful labeling; Tree;
D O I
10.1016/j.akcej.2016.06.002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G = (V(G), E(G)) be a simple, finite and undirected graph of order p and size q. A bijection f : V(G). E(G) -> {k, k + 1, k + 2, ... , k + p + q - 1} such that f (uv) = vertical bar f(u) - f(v)vertical bar for every edge uv is an element of E(G) is said to be a k-super graceful labeling of G. We say G is k-super graceful if it admits a k-super graceful labeling. For k = 1, the function f is called a super graceful labeling and a graph is super graceful if it admits a super graceful labeling. In this paper, we study the super gracefulness of complete graph, the disjoint union of certain star graphs, the complete tripartite graphs K(1, 1, n), and certain families of trees. We also present four methods of constructing new super graceful graphs. In particular, all trees of order at most 7 are super graceful. We conjecture that all trees are super graceful. (C) 2016 Kalasalingam University. Publishing Services by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
引用
收藏
页码:200 / 209
页数:10
相关论文
共 50 条
  • [1] Further results on edge even graceful labeling of the join of two graphs
    Mohamed R. Zeen El Deen
    Nora A. Omar
    Journal of the Egyptian Mathematical Society, 28 (1)
  • [2] The Super Vertex-Graceful Labeling Of Graphs
    Gao, Zhen-Bin
    ARS COMBINATORIA, 2016, 124 : 389 - 400
  • [3] On (Super) Vertex-Graceful Labeling Of Graphs
    Gao, Zhen-Bin
    Zhang, Xiao-Dong
    Xu, Li-Juan
    ARS COMBINATORIA, 2016, 126 : 121 - 131
  • [4] Further results on edge - odd graceful graphs
    Seoud, Mohammed
    Salim, Maher
    TURKISH JOURNAL OF MATHEMATICS, 2016, 40 (03) : 647 - 656
  • [5] SOME RESULTS ON GRACEFUL LABELING FOR FAMILIES OF SWASTIK GRAPHS
    Kaneria, V. J.
    Makadia, H. M.
    ADVANCES AND APPLICATIONS IN DISCRETE MATHEMATICS, 2015, 16 (02): : 161 - 172
  • [6] Further results on super mean graphs
    Vasuki, R.
    Nagarajan, A.
    JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY, 2011, 14 (02): : 193 - 206
  • [7] A new graceful labeling for pendant graphs
    Graf, Alessandra
    AEQUATIONES MATHEMATICAE, 2014, 87 (1-2) : 135 - 145
  • [8] Graceful Labeling of Generalized Theta graphs
    Sathiamoorthy, G.
    Janakiraman, T. N.
    NATIONAL ACADEMY SCIENCE LETTERS-INDIA, 2018, 41 (02): : 121 - 122
  • [9] ON GRACEFUL AND CORDIAL LABELING OF SHELL GRAPHS
    Sethuraman, G.
    Sankar, K.
    ARS COMBINATORIA, 2011, 99 : 225 - 242
  • [10] Graceful Labeling for Some Supercaterpillar Graphs
    Pakpahan, R. N.
    Mursidah, I.
    Novitasari, I. D.
    Sugeng, K. A.
    INTERNATIONAL SYMPOSIUM ON CURRENT PROGRESS IN MATHEMATICS AND SCIENCES 2016 (ISCPMS 2016), 2017, 1862