ASYMPTOTICALLY AUTONOMOUS SEMIFLOWS - CHAIN RECURRENCE AND LYAPUNOV FUNCTIONS

被引:190
|
作者
MISCHAIKOW, K [1 ]
SMITH, H [1 ]
THIEME, HR [1 ]
机构
[1] ARIZONA STATE UNIV,DEPT MATH,TEMPE,AZ 85287
关键词
CHAIN RECURRENCE; ASYMPTOTICALLY AUTONOMOUS SEMIFLOW; LYAPUNOV FUNCTION;
D O I
10.2307/2154964
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
From the work of C. Conley, it is known that the omega limit set of a precompact orbit of an autonomous semiflow is a chain recurrent set. Here, we improve a result of L. Markus by showing that the omega limit set of a solution of an asymptotically autonomous semiflow is a chain recurrent set relative to the limiting autonomous semiflow. In the special case that there is a Lyapunov function for the limiting semiflow, sufficient conditions are given for an omega limit set of the asymptotically autonomous semiflow to be contained in a level set of the Lyapunov function.
引用
收藏
页码:1669 / 1685
页数:17
相关论文
共 50 条
  • [31] Lyapunov type functions for classes of autonomous parabolic feedback control problems and applications
    Gluzman, Mark O.
    Gorban, Nataliia V.
    Kasyanov, Pavlo O.
    APPLIED MATHEMATICS LETTERS, 2015, 39 : 19 - 21
  • [32] Stability Analysis for Autonomous Dynamical Switched Systems through Nonconventional Lyapunov Functions
    Nosov, V.
    Meda-Campana, J. A.
    Gomez-Mancilla, J. C.
    Escobedo-Alva, J. O.
    Hernandez-Garcia, R. G.
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2015, 2015
  • [33] RECURRENCE AND LYAPUNOV EXPONENTS
    Saussol, B.
    Troubetzkoy, S.
    Vaienti, S.
    MOSCOW MATHEMATICAL JOURNAL, 2003, 3 (01) : 189 - 203
  • [34] Semiflows on topological spaces: Chain transitivity and semigroups
    Patrao, Mauro
    San Martin, Luiz A. B.
    JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2007, 19 (01) : 155 - 180
  • [35] Semiflows on Topological Spaces: Chain Transitivity and Semigroups
    Mauro Patrão
    Luiz A.B. San Martin
    Journal of Dynamics and Differential Equations, 2007, 19
  • [36] Bifurcations of Asymptotically Autonomous Systems
    Rasmussen, Martin
    ATTRACTIVITY AND BIFURCATION FOR NONAUTONOMOUS DYNAMICAL SYSTEMS, 2007, 1907 : 153 - 191
  • [37] A Generalized Chain Rule and a Bound on the Continuity of Solutions and Converse Lyapunov Functions
    Peet, Matthew M.
    PROCEEDINGS OF THE 48TH IEEE CONFERENCE ON DECISION AND CONTROL, 2009 HELD JOINTLY WITH THE 2009 28TH CHINESE CONTROL CONFERENCE (CDC/CCC 2009), 2009, : 3155 - 3161
  • [38] ASYMPTOTICALLY AUTONOMOUS DIFFERENTIAL SYSTEMS
    MARKUS, L
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1953, 59 (06) : 542 - 542
  • [39] Normal Lyapunov exponents and asymptotically stable attractors
    Xu, Lan
    Chen, Beimei
    Zhao, Yun
    Cao, Yongluo
    DYNAMICAL SYSTEMS-AN INTERNATIONAL JOURNAL, 2008, 23 (02): : 207 - 218
  • [40] Lyapunov Functions
    Giesl, Peter
    CONSTRUCTION OF GLOBAL LYAPUNOV FUNCTIONS USING RADIAL BASIS FUNCTIONS, 2007, 1904 : 11 - 59