OPTIMUM DAMPING IN LINEAR ISOLATION SYSTEMS

被引:56
|
作者
INAUDI, JA
KELLY, JM
机构
[1] Department of Civil Engineering, University of California at Berkeley, EERC, Richmond, California, 94804, Richmond Field Station
来源
关键词
D O I
10.1002/eqe.4290220704
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Optimum isolation damping for minimum acceleration response of base-isolated structures subjected to stationary random excitation is investigated. Three linear models are considered to account for the energy dissipation mechanism of the isolation system: a Kelvin element, a linear hysteretic element and a standard solid linear element, commonly used viscoelastic models for isolation systems comprising natural rubber bearings and viscous dampers. The criterion selected for optimality is the minimization of the mean-square floor acceleration response. The effects of the frequency content of the excitation and superstructure properties on the optimum damping and on the mean-square acceleration response are addressed. The study basically shows that the attainable reduction in the floor acceleration largely depends on the energy dissipation mechanism assumed for the isolation system as well as on the frequency content of the ground acceleration process. Special care should be taken in accurately modelling the mechanical behaviour of the energy dissipation devices.
引用
收藏
页码:583 / 598
页数:16
相关论文
共 50 条
  • [31] OPTIMUM VIBRATION ABSORBERS FOR LINEAR DAMPED SYSTEMS
    RANDALL, SE
    HALSTED, DM
    TAYLOR, DL
    [J]. MECHANICAL ENGINEERING, 1979, 101 (03) : 86 - 87
  • [32] OPTIMUM VIBRATION ABSORBERS FOR LINEAR DAMPED SYSTEMS
    RANDALL, SE
    HALSTED, DM
    TAYLOR, DL
    [J]. JOURNAL OF MECHANICAL DESIGN-TRANSACTIONS OF THE ASME, 1981, 103 (04): : 908 - 913
  • [33] OPTIMUM CONTROL OF LINEAR SYSTEMS WITH TRANSPORTATION LAG
    KHATRI, HC
    [J]. JOURNAL OF BASIC ENGINEERING, 1967, 89 (02): : 385 - &
  • [34] OPTIMUM DAMPING FOR ACCELEROMETERS
    GIBSON, RF
    SPECKHAR.FH
    [J]. INSTRUMENTS & CONTROL SYSTEMS, 1972, 45 (09): : 87 - &
  • [35] OPTIMUM DAMPING OF ELASTIC OSCILLATIONS IN A DOUBLE-ARMATURE LINEAR SYNCHRONOUS MOTOR
    KUZNETSOV, BI
    [J]. ELECTRICAL TECHNOLOGY, 1995, (02): : 67 - 73
  • [36] Determination of optimal damping parameters for seismic isolation systems
    Kovaleva, N. V.
    Rutman, Yu. L.
    Davydova, G. V.
    [J]. MAGAZINE OF CIVIL ENGINEERING, 2013, 40 (05): : 107 - 115
  • [37] Application of non-linear damping to vibration isolation: an experimental study
    Laalej, H.
    Lang, Z. Q.
    Daley, S.
    Zazas, I.
    Billings, S. A.
    Tomlinson, G. R.
    [J]. NONLINEAR DYNAMICS, 2012, 69 (1-2) : 409 - 421
  • [38] Application of non-linear damping to vibration isolation: an experimental study
    H. Laalej
    Z. Q. Lang
    S. Daley
    I. Zazas
    S. A. Billings
    G. R. Tomlinson
    [J]. Nonlinear Dynamics, 2012, 69 : 409 - 421
  • [39] Dimension reduction for damping optimization in linear vibrating systems
    Benner, Peter
    Tomljanovic, Zoran
    Truhar, Ninoslav
    [J]. ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2011, 91 (03): : 179 - 191
  • [40] EFFECT OF DAMPING ON NATURAL FREQUENCIES OF LINEAR DYNAMIC SYSTEMS
    CAUGHEY, TK
    OKELLY, MEJ
    [J]. JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 1961, 33 (11): : 1458 - &