CANTORI SPECTRA FOR THE SAWTOOTH MAP

被引:0
|
作者
BARTUCCELLI, M [1 ]
机构
[1] UNIV LONDON,QUEEN MARY & WESTFIELD COLL,SCH MATH SCI,LONDON E1 4NS,ENGLAND
关键词
D O I
10.1007/BF02458737
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We calculate analytically the Fourier spectrum for the cantori of the sawtooth maps. These maps are a one-parameter family of chaotic area-preserving maps. We show that the Fourier spectrum grows exponentially for parameters close to criticality, and that it exhibits self-similarity structure at all length scales. The self-similarity scales as the quotients of successive denominators of the convergents of irrational numbers. We compute exactly the scaling for quadratic irrationals. The behaviour of the spectrum for large values of the perturbation parameter is also investigated.
引用
收藏
页码:1299 / 1311
页数:13
相关论文
共 50 条
  • [41] Quantum localization and cantori in the stadium billiard
    Intl. Ctr. Stud. of Dynamical Syst., via Lucini, 3, I-22100 Como, Italy
    不详
    不详
    Phys Rev E., 3 PART A (R2516-R2519):
  • [42] HYPERBOLIC CANTORI HAVE DIMENSION ZERO
    MACKAY, RS
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1987, 20 (09): : L559 - L561
  • [43] A Low-Complexity Programmable Current Mode Circuit to Design the Sawtooth Chaotic Map
    Addabbo, Tommaso
    Fort, Ada
    Mugnaini, Marco
    Rocchi, Santina
    Takaloo, Hadis
    Vignoli, Valerio
    Petra, Nicola
    2017 13TH CONFERENCE ON PH.D. RESEARCH IN MICROELECTRONICS AND ELECTRONICS (PRIME), 2017, : 361 - 364
  • [44] LEVEL STATISTICS OF A QUANTIZED CANTORI SYSTEM
    WINTGEN, D
    MARXER, H
    PHYSICAL REVIEW LETTERS, 1988, 60 (11) : 971 - 974
  • [45] Quantum localization and cantori in the stadium billiard
    Casati, Giulio
    Prosen, Tomaz
    Physical Review E. Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 1999, 59 (3 pt A):
  • [46] THE MECHANISM OF SAWTOOTH PRECURSORS AND SAWTOOTH RELAXATIONS
    ROGISTER, A
    KALECK, A
    PSIMOPOULOS, M
    HASSELBERG, G
    PHYSICS OF FLUIDS B-PLASMA PHYSICS, 1990, 2 (05): : 953 - 972
  • [47] Parametrized spectra, multiplicative Thom spectra and the twisted Umkehr map
    Ando, Matthew
    Blumberg, Andrew J.
    Gepner, David
    GEOMETRY & TOPOLOGY, 2018, 22 (07) : 3761 - 3825
  • [48] LYAPUNOV SPECTRA OF COUPLED MAP LATTICES
    ISOLA, S
    POLITI, A
    RUFFO, S
    TORCINI, A
    PHYSICS LETTERS A, 1990, 143 (08) : 365 - 368
  • [49] GRAIN-SIZE SPECTRA MAP
    DOWLING, JJ
    JOURNAL OF SEDIMENTARY PETROLOGY, 1977, 47 (01): : 281 - 284
  • [50] The Beilinson regulator is a map of ring spectra
    Bunke, Ulrich
    Nikolaus, Thomas
    Tamme, Georg
    ADVANCES IN MATHEMATICS, 2018, 333 : 41 - 86