MOMENT SEQUENCES AND BERNSTEIN POLYNOMIALS

被引:0
|
作者
EISENBER.SM
机构
来源
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:110 / &
相关论文
共 50 条
  • [31] DEGENERATE BERNSTEIN POLYNOMIALS
    FREEDMAN, D
    PASSOW, E
    JOURNAL OF APPROXIMATION THEORY, 1983, 39 (01) : 89 - 92
  • [32] Degenerate Bernstein polynomials
    Kim, Taekyun
    Kim, Dae San
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2019, 113 (03) : 2913 - 2920
  • [33] On Multivariate Bernstein Polynomials
    Foupouagnigni, Mama
    Mouafo Wouodjie, Merlin
    MATHEMATICS, 2020, 8 (09)
  • [34] GENERALIZED BERNSTEIN POLYNOMIALS
    BUSTOZ, J
    GROETSCH, CW
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1974, 5 (02) : 256 - 262
  • [35] A GENERALIZATION OF BERNSTEIN POLYNOMIALS
    SCHNABL, R
    MATHEMATISCHE ANNALEN, 1968, 179 (01) : 74 - &
  • [36] Generalized Bernstein polynomials
    Agrawal, P. N.
    Bhardwaj, Neha
    Chauhan, Ruchi
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2024,
  • [37] Jacobi Polynomials on the Bernstein Ellipse
    Wang, Haiyong
    Zhang, Lun
    JOURNAL OF SCIENTIFIC COMPUTING, 2018, 75 (01) : 457 - 477
  • [38] A note on degenerate Bernstein polynomials
    Taekyun Kim
    Dae San Kim
    Gwan-Woo Jang
    Jongkyum Kwon
    Journal of Inequalities and Applications, 2019
  • [39] BERNSTEIN POLYNOMIALS AND MILNOR ALGEBRAS
    KOCHMAN, F
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1976, 73 (08) : 2546 - 2546
  • [40] On Bernstein type polynomials and their applications
    Yilmaz Simsek
    Melih Gunay
    Advances in Difference Equations, 2015