Stationary Threshold Vector Autoregressive Models

被引:7
|
作者
Grynkiv, Galyna [1 ]
Stentoft, Lars [1 ,2 ]
机构
[1] Univ Western Ontario, Dept Econ, Social Sci Ctr, London, ON N6A 5C2, Canada
[2] Univ Western Ontario, Dept Stat & Actuarial Sci, Western Sci Ctr, London, ON N6A 5B7, Canada
来源
基金
新加坡国家研究基金会;
关键词
asset price bubbles; explosive regimes; multivariate nonlinear time series; steady state distributions; TVAR models;
D O I
10.3390/jrfm11030045
中图分类号
F8 [财政、金融];
学科分类号
0202 ;
摘要
This paper examines the steady state properties of the Threshold Vector Autoregressive model. Assuming that the trigger variable is exogenous and the regime process follows a Bernoulli distribution, necessary and sufficient conditions for the existence of stationary distribution are derived. A situation related to so-called locally explosive models, where the stationary distribution exists though the model is explosive in one regime, is analysed. Simulations show that locally explosive models can generate some of the key properties of financial and economic data. They also show that assessing the stationarity of threshold models based on simulations might well lead to wrong conclusions.
引用
收藏
页数:23
相关论文
共 50 条
  • [41] A spatial prior for Bayesian vector autoregressive models
    LeSage, JP
    Krivelyova, A
    [J]. JOURNAL OF REGIONAL SCIENCE, 1999, 39 (02) : 297 - 317
  • [42] The specification of vector autoregressive moving average models
    Koreisha, SG
    Pukkila, T
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2004, 74 (08) : 547 - 565
  • [43] Testing for serial independence in vector autoregressive models
    Simos G. Meintanis
    Joseph Ngatchou-Wandji
    James Allison
    [J]. Statistical Papers, 2018, 59 : 1379 - 1410
  • [44] Model uncertainty in Panel Vector Autoregressive models
    Koop, Gary
    Korobilis, Dimitris
    [J]. EUROPEAN ECONOMIC REVIEW, 2016, 81 : 115 - 131
  • [45] On the vector-valued generalized autoregressive models
    Khorshidi, H. R.
    Nematollahi, A. R.
    Manouchehri, T.
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2023, 93 (14) : 2428 - 2449
  • [46] Testing for serial independence in vector autoregressive models
    Meintanis, Simos G.
    Ngatchou-Wandji, Joseph
    Allison, James
    [J]. STATISTICAL PAPERS, 2018, 59 (04) : 1379 - 1410
  • [47] Stabilization of stationary and time-varying autoregressive models
    Juntunen, M
    Tervo, J
    Kaipio, JP
    [J]. PROCEEDINGS OF THE 1998 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING, VOLS 1-6, 1998, : 2173 - 2176
  • [48] Order selection criteria for vector autoregressive models
    Karimi, Mahmood
    [J]. SIGNAL PROCESSING, 2011, 91 (04) : 955 - 969
  • [49] Identifiability of structural singular vector autoregressive models
    Funovits, Bernd
    Braumann, Alexander
    [J]. JOURNAL OF TIME SERIES ANALYSIS, 2021, 42 (04) : 431 - 441
  • [50] Fitting autoregressive trend stationary models with finite samples
    Falk, B
    [J]. INTERNATIONAL JOURNAL OF FORECASTING, 1999, 15 (01) : 11 - 25