We comment on a recent paper by Kennedy (J. Phys. A: Math. Gen. 25 (1992) 2809) in which a systematic search for integrable spin-S su(2)-invariant quantum chains for S less-than-or-equal-to 6 revealed four spin-S families of integrable chains along with an additional integrable chain at S = 3. We identify these su(2)-invariant chains with known G-invariant R-matrices, where G is a simple Lie algebra, and give arguments that Kennedy's results may well constitute the complete classification of integrable spin-S su(2)-invariant chains.
机构:
Univ Denver, Dept Math, Denver, CO 80208 USAUniv Buenos Aires, Math Res Inst Luis A Santalo IMAS, Buenos Aires, DF, Argentina
Kinyon, Michael
Stanovsky, David
论文数: 0引用数: 0
h-index: 0
机构:
Charles Univ Prague, Fac Math & Phys, Dept Algebra, Prague, Czech RepublicUniv Buenos Aires, Math Res Inst Luis A Santalo IMAS, Buenos Aires, DF, Argentina
Stanovsky, David
Vojtechovsky, Petr
论文数: 0引用数: 0
h-index: 0
机构:
Univ Denver, Dept Math, Denver, CO 80208 USAUniv Buenos Aires, Math Res Inst Luis A Santalo IMAS, Buenos Aires, DF, Argentina