INHOMOGENEOUS MULTIDIMENSIONAL EPSTEIN ZETA-FUNCTIONS

被引:44
|
作者
KIRSTEN, K
机构
[1] Universität Kaiserslautern, Fachbereich Physik
关键词
D O I
10.1063/1.529045
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The pole structure of the inhomogeneous multidimensional Epstein zeta function, E(N)m2 (s; a1,....a(N)) = SIGMA-n1 infinity,...,n(N) = 1 (a1 n1(2) + ... + a(N)n2N + m2)-s, is determined using heat-kernel techniques. The poles of E(N)m2 (s; a1,...,a(N)) are found to be s = N /2; (N - 1)/2;...;1/2; -(2l + 1)/2, l is-an-element-of N0. Furthermore, their residues and E(N)m2 (- p; a1,...,a(N)), p is-an-element-of N0, are given explicitly. These results are used to find the high-temperature expansion of the Helmoholtz free-energy of a massive spin-0 and spin-1/2 gas subject to Dirichlet boundary conditions on hypercuboids in a flat n-dimensional space-time.
引用
收藏
页码:3008 / 3014
页数:7
相关论文
共 50 条
  • [41] CONJECTURE OF DEDEKIND ON ZETA-FUNCTIONS
    VANDERWAALL, RW
    PROCEEDINGS OF THE KONINKLIJKE NEDERLANDSE AKADEMIE VAN WETENSCHAPPEN SERIES A-MATHEMATICAL SCIENCES, 1975, 78 (01): : 93 - 86
  • [42] HIGHER TORSION ZETA-FUNCTIONS
    DEITMAR, A
    ADVANCES IN MATHEMATICS, 1995, 110 (01) : 109 - 128
  • [43] Arithmetical identities and zeta-functions
    Kanemitsu, Shigeru
    Ma, Jing
    Tanigawa, Yoshio
    MATHEMATISCHE NACHRICHTEN, 2011, 284 (2-3) : 287 - 297
  • [44] PARABOLIC COMPONENTS OF ZETA-FUNCTIONS
    KUROKAWA, N
    PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 1988, 64 (01) : 21 - 24
  • [45] Supersymmetric Dynamics and Zeta-Functions
    Physics of Particles and Nuclei, 2018, 49 : 961 - 962
  • [46] ZETA-FUNCTIONS OF RECOGNIZABLE LANGUAGES
    BERSTEL, J
    REUTENAUER, C
    LECTURE NOTES IN COMPUTER SCIENCE, 1988, 317 : 93 - 104
  • [47] On Universality of Certain Zeta-functions
    Laurincikas, A.
    Macaitiene, R.
    Mokhov, D.
    Siauciunas, D.
    IZVESTIYA SARATOVSKOGO UNIVERSITETA NOVAYA SERIYA-MATEMATIKA MEKHANIKA INFORMATIKA, 2013, 13 (04): : 72 - 76
  • [48] Deformations of polynomials and their zeta-functions
    Gusein-Zade S.M.
    Siersma D.
    Journal of Mathematical Sciences, 2007, 144 (1) : 3782 - 3788
  • [49] ZETA-FUNCTIONS ON THE UNITARY SPHERE
    MINAKSHISUNDARAM, S
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1952, 4 (01): : 26 - 30
  • [50] ZEROS OF RIEMANN ZETA-FUNCTIONS
    KARATSUBA, AA
    DOKLADY AKADEMII NAUK SSSR, 1984, 276 (03): : 535 - 539