A TOPOLOGICAL-FIELD-THEORY APPROACH TO THE NON-ABELIAN STOKES THEOREM

被引:7
|
作者
BRODA, B
机构
[1] Institute of Physics, University of Ódź, PL-90-236 Ódź
关键词
D O I
10.1063/1.529675
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A holomorphic path-integral representation for the parallel-transport and holonomy operator is derived. It is shown that a new form of the non-Abelian Stokes theorem follows from the Abelian Stokes theorem used for a topological field theory in an external gauge field.
引用
收藏
页码:1511 / 1514
页数:4
相关论文
共 50 条
  • [21] Path integral representation for Wilson loops and the non-Abelian Stokes theorem
    Faber, M
    Ivanov, AN
    Troitskaya, NI
    Zach, M
    PHYSICAL REVIEW D, 2000, 62 (02) : 1 - 22
  • [22] Wilson loop and magnetic monopole through a non-Abelian Stokes theorem
    Kondo, Kei-Ichi
    PHYSICAL REVIEW D, 2008, 77 (08):
  • [23] On the non-abelian global class field theory
    Ikeda, Kazim Ilhan
    ANNALES MATHEMATIQUES DU QUEBEC, 2013, 37 (02): : 129 - 172
  • [24] Boundary conformal field theory and tunneling of edge quasiparticles in non-Abelian topological states
    Fendley, Paul
    Fisher, Matthew P. A.
    Nayak, Chetan
    ANNALS OF PHYSICS, 2009, 324 (07) : 1547 - 1572
  • [25] A non-abelian Stickelberger theorem
    Burns, David
    Johnston, Henri
    COMPOSITIO MATHEMATICA, 2011, 147 (01) : 35 - 55
  • [26] Electrodynamics as a non-Abelian gauge field theory
    Anon
    Journal of New Energy, 1999, 4 (03): : 97 - 106
  • [27] Non-Abelian local class field theory
    Laubie, Francois
    COMPOSITIO MATHEMATICA, 2007, 143 (02) : 339 - 362
  • [28] Non-Abelian Stokes theorem and quark confinement in SU(3) Yang-Mills gauge theory
    Kondo, K
    Taira, Y
    MODERN PHYSICS LETTERS A, 2000, 15 (05) : 367 - 377
  • [29] Non-Abelian Stokes theorem and quark confinement in SU(N) Yang-Mills gauge theory
    Kondo, KI
    Taira, Y
    PROGRESS OF THEORETICAL PHYSICS, 2000, 104 (06): : 1189 - 1265
  • [30] ON TOPOLOGICAL BOUNDARY CHARACTERISTICS IN NON-ABELIAN GAUGE-THEORY
    CRONSTROM, C
    MICKELSSON, J
    JOURNAL OF MATHEMATICAL PHYSICS, 1983, 24 (10) : 2528 - 2531