A MULTI-GROUP FORMALISM TO SOLVE THE FOKKER-PLANCK EQUATION CHARACTERIZING CHARGED-PARTICLE TRANSPORT

被引:15
|
作者
HALDY, PA
LIGOU, J
机构
关键词
D O I
10.13182/NSE80-A20117
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
引用
收藏
页码:178 / 184
页数:7
相关论文
共 50 条
  • [21] How to solve Fokker-Planck equation treating mixed eigenvalue spectrum?
    Brics, M.
    Kaupuzs, J.
    Mahnke, R.
    CONDENSED MATTER PHYSICS, 2013, 16 (01)
  • [22] APPLYING MULTIQUADRIC QUASI-INTERPOLATION TO SOLVE FOKKER-PLANCK EQUATION
    Rahimi, M.
    Adibi, H.
    Amirfakhrian, M.
    TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2023, 13 (01): : 152 - 165
  • [23] Multi-diffusive nonlinear Fokker-Planck equation
    Ribeiro, Mauricio S.
    Casas, Gabriela A.
    Nobre, Fernando D.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2017, 50 (06)
  • [25] Verification and preliminary results of the generalized Boltzmann Fokker-Planck method for charged particle radiation transport
    Quirk, TJ
    Prinja, AK
    Franke, BC
    Proceedings of the HPCMP, Users Group Conference 2005, 2005, : 75 - 78
  • [26] VARIATIONAL FORMULATION OF THE FOKKER-PLANCK EQUATION WITH DECAY: A PARTICLE APPROACH
    Peletier, Mark A.
    Renger, D. R. Michiel
    Veneroni, Marco
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2013, 15 (05)
  • [27] Adaptive Gaussian particle method for the solution of the Fokker-Planck equation
    Scharpenberg, Moriz Dirk
    Lukacova-Medvid'ova, Maria
    ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2012, 92 (10): : 770 - 781
  • [28] ON THE DERIVATION OF AN N-PARTICLE ANALOG OF THE FOKKER-PLANCK EQUATION
    BREY, JJ
    CASADO, JM
    MORILLO, M
    PHYSICA A, 1983, 121 (1-2): : 122 - 134
  • [29] ALPHA-PARTICLE TRANSPORT STUDIES USING A MODIFIED FOKKER-PLANCK EQUATION AND SEMIEMPIRICAL TRANSPORT LAWS
    KAMELANDER, G
    FUSION TECHNOLOGY, 1990, 18 (03): : 384 - 388
  • [30] SOLUTION OF THE FOKKER-PLANCK TRANSPORT-EQUATION BY MATRIX FACTORIZATION
    ANDRADE, A
    OLIPHANT, TA
    KAMMASH, T
    JOURNAL OF COMPUTATIONAL PHYSICS, 1981, 42 (02) : 367 - 381