A NEW METHOD FOR PROVING LOWER BOUNDS IN THE MODEL OF ALGEBRAIC DECISION TREES

被引:0
|
作者
UNGER, K
机构
关键词
D O I
暂无
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
引用
收藏
页码:271 / 277
页数:7
相关论文
共 50 条
  • [21] A Generalized Method for Proving Polynomial Calculus Degree Lower Bounds
    Miksa, Mladen
    Nordstrom, Jakob
    JOURNAL OF THE ACM, 2024, 71 (06)
  • [22] A Generalized Method for Proving Polynomial Calculus Degree Lower Bounds
    Miksa, Mladen
    Nordstrom, Jakob
    30TH CONFERENCE ON COMPUTATIONAL COMPLEXITY (CCC 2015), 2015, 33 : 467 - 487
  • [23] REVISIONIST SIMULATIONS: A NEW APPROACH TO PROVING SPACE LOWER BOUNDS
    Ellen, Faith
    Gelashvili, Rati
    Zhu, Leqi
    SIAM JOURNAL ON COMPUTING, 2024, 53 (04) : 1039 - 1084
  • [24] Revisionist Simulations: A New Approach to Proving Space Lower Bounds
    Ellen, Faith
    Gelashvili, Rati
    Zhu, Leqi
    PODC'18: PROCEEDINGS OF THE 2018 ACM SYMPOSIUM ON PRINCIPLES OF DISTRIBUTED COMPUTING, 2018, : 61 - 70
  • [25] An exponential lower bound on the size of algebraic decision trees for Max
    D. Grigoriev
    M. Karpinski
    A.C. Yao
    computational complexity, 1998, 7 : 193 - 203
  • [26] An exponential lower bound on the size of algebraic decision trees for MAX
    Grigoriev, D
    Karpinski, R
    Yao, AC
    COMPUTATIONAL COMPLEXITY, 1998, 7 (03) : 193 - 203
  • [27] Some new lower bounds on the algebraic connectivity of graphs
    Lin, Zhen
    Zhang, Rong
    Wang, Juan
    CONTRIBUTIONS TO MATHEMATICS, 2023, 7 : 53 - 59
  • [28] New lower bounds on the cost of binary search trees
    DePrisco, R
    DeSantis, A
    THEORETICAL COMPUTER SCIENCE, 1996, 156 (1-2) : 315 - 325
  • [29] Lower bound on testing membership to a polyhedron by algebraic decision and computation trees
    Grigoriev, D
    Karpinski, M
    Vorobjov, N
    DISCRETE & COMPUTATIONAL GEOMETRY, 1997, 17 (02) : 191 - 215
  • [30] A VARIANT OF BEN-ORS LOWER BOUND FOR ALGEBRAIC DECISION TREES
    SEIFERAS, J
    INFORMATION PROCESSING LETTERS, 1988, 26 (05) : 273 - 276