SECTIONS ALONG A MAP APPLIED TO HIGHER-ORDER LAGRANGIAN MECHANICS - NOETHER THEOREM

被引:0
|
作者
CARINENA, JF
LOPEZ, C
MARTINEZ, E
机构
[1] UNIV ZARAGOZA,DEPT FIS TEOR,E-50009 ZARAGOZA,SPAIN
[2] UNIV COMPLUTENSE MADRID,DEPT FIS TEOR 2,E-28040 MADRID,SPAIN
关键词
HIGHER-ORDER TANGENT BUNDLES; HIGHER-ORDER LAGRANGIAN MECHANICS; SECTIONS ALONG A MAP; DERIVATIONS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that the concept of a section along a map is a fundamental concept within the framework of the geometrical description of classical mechanics. We review the higher-order Lagrangian mechanics formulation, and simpler redefinitions of basic objects appear in a natural way. As an application, Noether's theorem for higher-order Lagrangian mechanics admitting a converse is developed.
引用
收藏
页码:127 / 151
页数:25
相关论文
共 50 条
  • [21] HIGHER-ORDER VERSIONS OF NOETHERS THEOREM
    BARBER, JS
    HORNDESKI, GW
    UTILITAS MATHEMATICA, 1989, 35 : 19 - 39
  • [22] Higher-order supersymmetric quantum mechanics
    Fernández, DJ
    Fernández-García, N
    LATIN-AMERICAN SCHOOL OF PHYSICS - XXXV ELAF: SUPERSYMMETRIES IN PHYSICS AND ITS APPLICATIONS, 2005, 744 : 236 - +
  • [23] DYNAMIC CONNECTIONS AND HIGHER-ORDER LAGRANGIAN SYSTEMS
    OPRIS, D
    KLEPP, FC
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 1993, 42 (1-2): : 1 - 10
  • [24] QUANTUM COSMOLOGY AND HIGHER-ORDER LAGRANGIAN THEORIES
    VANELST, H
    LIDSEY, JE
    TAVAKOL, R
    CLASSICAL AND QUANTUM GRAVITY, 1994, 11 (10) : 2483 - 2497
  • [25] A Lagrangian description of the higher-order Painlev, equations
    Choudhury, A. Ghose
    Guha, Partha
    Kudryashov, N. A.
    COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2012, 52 (05) : 746 - 755
  • [26] HIGHER-ORDER CONDITIONS FOR SINGULAR LAGRANGIAN DYNAMICS
    GRACIA, X
    PONS, JM
    ROMANROY, N
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1992, 25 (07): : 1989 - 2004
  • [27] On higher-order differentiation in nonlinear mechanics
    Charpentier, I.
    OPTIMIZATION METHODS & SOFTWARE, 2012, 27 (02): : 221 - 232
  • [28] A Lagrangian description of the higher-order Painleve equations
    Choudhury, A. Ghose
    Guha, Partha
    Kudryashov, Nikolay A.
    APPLIED MATHEMATICS AND COMPUTATION, 2012, 218 (11) : 6612 - 6619
  • [29] DERIVATION OF SKYRME LAGRANGIAN AND HIGHER-ORDER TERM
    ITO, A
    PHYSICAL REVIEW D, 1990, 41 (09): : 2930 - 2932
  • [30] LAGRANGIAN SUBMANIFOLDS AND HIGHER-ORDER MECHANICAL SYSTEMS
    DELEON, M
    LACOMBA, EA
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1989, 22 (18): : 3809 - 3820