MICROCANONICAL ENERGY DISTRIBUTION IN COMPLEXES OF CLASSICAL OSCILLATORS

被引:0
|
作者
SOLC, M
机构
关键词
D O I
10.1135/cccc19712327
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
引用
收藏
页码:2327 / &
相关论文
共 50 条
  • [41] Microcanonical temperature for a classical field: Application to Bose-Einstein condensation
    Davis, MJ
    Morgan, SA
    PHYSICAL REVIEW A, 2003, 68 (05):
  • [42] Microcanonical ensemble study of a classical fluid of hard rods under gravity
    Velasco, S
    Román, FL
    González, A
    White, JA
    EUROPEAN PHYSICAL JOURNAL B, 1999, 7 (03): : 421 - 427
  • [43] Topological approach to microcanonical thermodynamics and phase transition of interacting classical spins
    Santos, F. A. N.
    da Silva, L. C. B.
    Coutinho-Filho, M. D.
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2017,
  • [44] On the equivalence between fractional and classical oscillators
    Labedzki, Pawel
    Pawlikowski, Rafal
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2023, 116
  • [45] CLASSICAL BEHAVIOR OF SYSTEMS OF QUANTUM OSCILLATORS
    GLAUBER, RJ
    PHYSICS LETTERS, 1966, 21 (06): : 650 - &
  • [46] NONLINEAR MODEL OF AUTOPHASING OF CLASSICAL OSCILLATORS
    KOBELEV, YA
    OSTROVSKY, LA
    SOUSTOVA, IA
    ZHURNAL EKSPERIMENTALNOI I TEORETICHESKOI FIZIKI, 1991, 99 (02): : 470 - 480
  • [47] Additional relationship between canonical and microcanonical ensembles in classical statistical mechanics
    Zakharov, AY
    TECHNICAL PHYSICS LETTERS, 2003, 29 (10) : 791 - 792
  • [48] Commensurate harmonic oscillators: Classical symmetries
    Amiet, JP
    Weigert, S
    JOURNAL OF MATHEMATICAL PHYSICS, 2002, 43 (08) : 4110 - 4126
  • [49] Additional relationship between canonical and microcanonical ensembles in classical statistical mechanics
    A. Yu. Zakharov
    Technical Physics Letters, 2003, 29 : 791 - 792
  • [50] Quantum dynamics simulation with classical oscillators
    Briggs, John S.
    Eisfeld, Alexander
    PHYSICAL REVIEW A, 2013, 88 (06):