FURTHER RESULTS ON THE PERTURBATION ESTIMATIONS FOR THE DRAZIN INVERSE

被引:7
|
作者
Ma, Haifeng [1 ]
Gao, Xiaoshuang [1 ]
机构
[1] Harbin Normal Univ, Sch Math Sci, Harbin 150025, Heilongjiang, Peoples R China
来源
NUMERICAL ALGEBRA CONTROL AND OPTIMIZATION | 2018年 / 8卷 / 04期
关键词
Group inverse; Drazin inverse; acute perturbation; spectral radius; spectral projection;
D O I
10.3934/naco.2018031
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For nxn complex singular matrix A with ind(A) = k > 1, let A(D) be the Drazin inverse of A. If a matrix B = A + E with ind(B) = 1 is said to be an acute perturbation of A, if parallel to Ek parallel to is small and the spectral radius of BgB-A(D)A satisfies rho(BgB-A(D)A) < 1, where B-g is the group inverse of B. The acute perturbation coincides with the stable perturbation of the group inverse, if the matrix B satisfies geometrical condition: R(B) boolean AND N(A(k)) = {0}, N(B) boolean AND R(A(k)) = {0} which introduced by Velez-Cerrada, Robles, and Castro-Gonzalez, (Error bounds for the perturbation of the Drazin inverse under some geometrical conditions, Appl. Math. Comput., 215 (2009), 2154-2161). Furthermore, two examples are provided to illustrate the acute perturbation of the Drazin inverse. We prove the correctness of the conjecture in a special case of ind(B) = 1 by Wei (Acute perturbation of the group inverse, Linear Algebra Appl., 534 (2017), 135-157).
引用
收藏
页码:493 / 503
页数:11
相关论文
共 50 条